Fuentes de carbono económicas para la producción de bioplásticos bacterianos
Economic carbon sources for bacterial bioplastic production
DOI:
https://doi.org/10.54167/tch.v3i2.730Palabras clave:
Polihidroxibutirato, polihidroxivalerato, bioplásticos, biocompatibilidad, biosíntesisResumen
Los plásticos, particularmente aquellos producidos a partir del petróleo, son utilizados ampliamente debido a sus propiedades mecánicas y fisicoquímicas. Sin embargo, estos materiales son poco biocompatibles y muestran resistencia a procesos de degradación, por lo que tienden a acumularse ocasionando efectos detrimentales al ambiente. Como sustituto a los petroplásticos (plásticos derivados del petróleo) se pueden emplear polímeros de origen biológico, que poseen propiedades similares a sus contrapartes sintéticas, pero una mayor biocompatibilidad. La mayoría de los bioplásticos (plásticos de origen biológico) muestran costos de producción más elevados que petroplásticos similares, lo que constituye una gran desventaja. En esta revisión se presenta una breve reseña de la biosíntesis bacteriana de polihidroxibutiratos (PHB) y polihidroxivaleratos (PHV ) a partir de fuentes de carbono consideradas como subproductos o desechos de actividades agrícolas o industriales. La selección de una fuente de carbono económica puede cerrar parcialmente la brecha económica entre la producción de bioplásticos y la producción de petroplásticos.
Abstract
Plastics, particularly those produced f rom crude oil, are widely used due to their mechanical, physical and chemical properties. Nevertheless, these materials are poorly biocompatible and show resistance to degradation processes; therefore, they tend to accumulate, causing detrimental effects on the environment. Polymers of biological origin that have similar properties but higher biocompatibility, can be used as a substitute to petroplastics (petroleum-based plastics). Most bioplastics (biologically obtained plastics) have higher production costs than similar petroplastics, which represents a great disadvantage. In this review, a brief account of bacterial polyhydroxybutirate (PHB) and polyhydroxyvalerate (PHV ) biosynthesis using carbon sources deemed as byproducts or waste of agricultural or industrial activities is presented. Choosing an economical carbon source can partially close the economic gap between bioplastic and petroplastic production.
Keywords: Polyhydroxybutirate, polyhydroxyvalerate, bioplastics, biocompatibility, biosynthesis.
Descargas
Citas
Anderson, J. & E. A. Dawes. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial Polyhydroxyalkanoates. Microbiology Reviews 54(4):450-472. https://doi.org/10.1128%2Fmr.54.4.450-472.1990
Brämer, C. O., P. Vandamme, L. F. Da Silva, J. G. C. Gomez & A. Steinbüchel. 2001. Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. International Journal of Systematic and Evolutionary Microbiology 51(Pt. 5):1709-1713. https://doi.org/10.1099/00207713-51-5-1709
Cho, K. S., H. W. Ryu, C. H. Park & P. R. Goodrich. 2001. Utilization of swine wastewater as a feedstock for the production of polyhydroxyalkanoates by Azotobacter vinelandii UWD. Journal of Bioscience and Bioengineering 91(2):129-133. https://doi.org/10.1263/jbb.91.129
Durner, R., B. Witholt & T. Egli. 2000. Accumulation of Poly[(R)- 3-Hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Applied and Environmental Microbiology 66(8):3408-3414. https://doi.org/10.1128%2Faem.66.8.3408-3414.2000
Jo, S. J., M. Maeda, T. Ooi & S. Taguchi. 2006. Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. Journal of Bioscience and Bioengineering 102(3):233-236. https://doi.org/10.1263/jbb.102.233
Kadouri, D., E. Jurkevitch & Y. Okon. 2005. Ecological and Agricultural significance of bacterial polyhydroxyalkanoates. Critical Reviews in Microbiology 31(2):55-67. https://doi.org/10.1080/10408410590899228
Khanna, S. & A. K. Srivastava. 2007. Production of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding. Journal of Industrial Microbiology and Biotechnology 34(6):457-461. https://doi.org/10.1007/s10295-007-0207-7
Katircioglu, H., B. Aslim, Z. N. Yuksekdao, N. Mercan & Y. Beyatli. 2003. Production of poly-b-hydroxybutyrate (PHB) and differentiation of putative Bacillus mutant strains by SDS-PAGE of total cell protein. African Journal of Biotechnology 2(6):147-149. https://doi.org/10.5897/AJB2003.000-1029
Madison, L. L. & G. W. Huisman. 1999. Metabolic engineering of Poly(3-Hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews 63(1):21-53. https://doi.org/10.1128%2Fmmbr.63.1.21-53.1999
Maiti, P., C. A. Batt & E. P. Giannelis. 2007. New biodegradable polyhydroxybutyrate / layered silicate nanocomposites. Biomacromolecules 8(11):3393-3400. https://doi.org/10.1021/bm700500t
Masuda, T. 2008. Geopolitics of Oil and Gas Pipelines.
Nikel, P. I., A. De Almeida, E. C. Melillo, M. A. Galvagno & M. J. Pettinari. 2006. New Recombinant Escherichia coli Strain Tailored for the Production of Poly(3-Hydroxybutyrate) from Agroindustrial By-Products. Applied and Environmental Microbiology 72(6):3949-3954. https://doi.org/10.1128/aem.00044-06
Nonato, R. V., P. E. Mantelatto & C. E. V. Rossell. 2001. Integrated production of biodegradable plastic, sugar and ethanol. Applied Microbiology and Biotechnology 57:1-5. https://doi.org/10.1007/s002530100732
Patnaik, P. 2005. Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Critical Reviews in Biotechnology 25(3):153-171. https://doi.org/10.1080/07388550500301438
Quillaguamán, J., S. Hashim, F. Bento, B. Mattiasson & R. Hatti-Kaul. 2005. Poly(b-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. Journal of Applied Microbiology 99(1):151-157. https://doi.org/10.1111/j.1365-2672.2005.02589.x
Shamala, T. R., A. Chandrashekar, S. V. N. Vijayendra & L. Kshama. 2002. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). Journal of Applied Microbiology 94(3): 369-374. https://doi.org/10.1046/j.1365-2672.2003.01838.x
Song, J. H., C. O. Jeon, M. H. Choi, S. C. Yoon & W. J. Park. 2008. Polyhydroxyalkanoate (PHA) Production using waste vegetable oil by Pseudomonas sp. DR2. Journal of Microbiology and Biotechnology 18(8):1408-1415. https://tinyurl.com/2p98p556
Trotsenko, Y. A. & L. L. Belova. 2000. Biosynthesis of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and its regulation in bacteria. Microbiology. 69(6):635-645. https://doi.org/10.1023/A:1026641821583
Van-Thuoc, D., J. Quillaguaman, G. Mamo & B. Mattiasson. 2007. Utilization of agricultural residues for poly (3-hydroxybutyrate) production by Halomonas boliviensis LC1. Journal of Applied Microbiology 104(2):420-428. https://doi.org/10.1111/j.1365-2672.2007.03553.x
Verlinden, R. A. J., D. J. Hill, M. A. Kenward, C. D. Williams & I. Radecka. 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology 102(6):1437- 1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x
Yezza, A., A. Halasz, W. Levadoux & J. Hawari. 2007. Production of poly-b-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap. Applied Microbiology and. Biotechnology 77(2):269-274. https://doi.org/10.1007/s00253-007-1158-7
Zakaria, M. R., S. Abd-Aziz, H. Ariffin, N. A. A. Rahman, P. L. Yee & M. A. Hassan. 2008. Comamonas sp. EB172 isolated from digester treating palm oil mill effluent as potential polyhydroxyalkanoate (PHA) producer. African Journal of Biotechnology 7(22): 4118-4121. https://www.ajol.info/index.php/ajb/article/view/59534
Publicado
Cómo citar
-
Resumen1729
-
PDF707
-
HTML342