Moléculas pécticas: extracción y su potencial aplicación como empaque
Pectic molecules: extraction and its packing potencial application
DOI:
https://doi.org/10.54167/tch.v5i2.697Palabras clave:
biopolímeros, residuos agroindustriales, cubiertas comestiblesResumen
Las pectinas son polisacáridos presentes en los tejidos vegetales, compuestos principalmente por cadenas de ácido galacturónico. Las pectinas se han extraído por diferentes métodos de los tejidos vegetales de diversos frutos, principalmente de los materiales de desecho como por ejemplo de la pomaza de manzana y de las cáscaras de cítricos, en los cuales se ha encontrado un mayor rendimiento. La demanda mundial de pectinas ha ido en aumento debido a la gran aplicabilidad de esta materia, ya que se ha empleado en la industria alimentaria por su alto poder gelificante y espesante, también tienen una gran aplicación en la industria farmacéutica y cosmética. Recientemente se han encontrado reportes del empleo de pectinas para la fabricación de recubrimientos y películas de empaque como alternativa a los empaques de origen sintético, con lo cual pueden aprovecharse los desechos o subproductos de la producción agrícola. Estos materiales llegan a representar la mitad del peso fresco total del fruto y son particularmente ricos en pectinas.
Abstract
Pectin is a polysaccharide found in vegetable tissues, which are mainly formed by galacturonic acid chains. Extraction of pectin from vegetable tissue has been done by a variety of methods, using as starting material, either fruits or waste material derived from fruit processing, like apple pomace or citric fruit peel, that have given high extraction yields. Worldwide demand of pectin has been increased due to the great applicability in different areas, including the food industry, where pectin is used as gelling and thickening agent; it is also been used in the pharmaceutical and cosmetic industries. Recently, pectin has been utilized in the production of edible coating and films to be used as packing materials, as an alternative to synthetic materials; that, at the same time, is an alternative to use the waste material and residues from agricultural production. These materials represent nearby the half of the fruit total weight and are particularly rich in pectin.
Keywords: biopolymers, agroindustrial residues, edible films.
Descargas
Citas
Alves, V.D., S. Mali, A. Beléia & M.V.E. Grossmann. 2007. Effect of glycerol and amylase enrichment on cassava starch film. Journal of Food Engineering 78(3):941-946. https://doi.org/10.1016/j.jfoodeng.2005.12.007
Bourtoom, T. & M.S. Chinnan. 2008. Preparation and properties of rice starch-chitosan blend biodegradable film. LWT – Food Science and Technology 41(9):1633-1641. https://doi.org/10.1016/j.lwt.2007.10.014
Chen, C.H. & L.S. Lai. 2008. Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids 22(8):1584-1595. https://doi.org/10.1016/j.foodhyd.2007.11.006
Coffin, D. R., M. L. Fishman & P. H. Cooke. 1995. Mechanical and microstructural properties of pectin/starch lms. Journal of Applied Polymer Science 57(6):663–670. https://doi.org/10.1002/app.1995.070570602
Coma, V. 2010. Polysaccharide-based biomaterials with antimicrobial and antioxidant Properties. Polímeros 20(2):1-12. https://doi.org/10.4322/polimeros020ov002
Contreras-Esquivel, J.C., C.E. Voget, CC.E. Vita, J.D. Espinoza- Perez & C.M.G.C. Renard. 2006. Enzymatic Extraction of lemon pectin by endo-polygalacturonase from Aspergillus niger. Food Science and Biotechnology 15(2):163-167. https://koreascience.kr/article/JAKO200609905839398.pdf
Correa, C., Y. Garza, J. Rodríguez, C. N.Aguilar & J. C. Contreras- Esquivel. 1999. Geles de pectina de bajo metoxilo modificadas enzimáticamente. Revista de la Sociedad Química de México 43(1):15-17. https://www.redalyc.org/pdf/475/47543203.pdf
Ele-Ekouna, J.P., C. Pau-Roblot, B. Courtois & J. Courtois. 2011. Chemical characterization of pectin from green tea (Camellia sinensis). Carbohydrate Polymers 83(3):1232–1239. https://doi.org/10.1016/j.carbpol.2010.09.028
El-Nawawi, S. A. & F. R. Shehata.1987. Extraction of pectin from Egyptian orange peel. Factors affecting the extraction. Biological Wastes 20(4):281–290. https://doi.org/10.1016/0269-7483(87)90005-X
Fishman, M. L. & P.H. Cooke. 2009. The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM. Carbohydrate Research 344(14):1792–1797. https://doi.org/10.1016/j.carres.2008.09.031
Fishman, M. L., H. K. Chau, P. D. Hoagland & A. T. Hotchkiss. 2006. Microwave-assisted extraction of lime pectin. Food Hydrocolloids 20(8):1170-1177. https://doi.org/10.1016/j.foodhyd.2006.01.002
Fishman, M. L., H. K. Chau, P. Hoagland & K. Ayyad. 2000. Characterization of pectin, ash extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research 323(1-4):126–138. https://doi.org/10.1016/s0008-6215(99)00244-x
Happi, T., C, Robert, S. Ronkart, B. Wathelet & M. Paquot. 2008. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using and experimental design. Food Chemistry 108(2): 463-471. https://doi.org/10.1016/j.foodchem.2007.10.078
Jo, C., H. Kang, N. Young, J. Kwon & M. Byuna. 2005. Pectin- and gelatin-based ûlm: effect of gamma irradiation on the mechanical properties and biodegradation. Radiation Physics and Chemistry 72(6):745–750. http://dx.doi.org/10.1016%2Fj.radphyschem.2004.05.045
Kalapathy, U. & A. Proctor. 2001. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chemistry 73(4):393-396. https://doi.org/10.1016/S0308-8146(00)00307-1
Kang, H. J., J. O. Cheorun, N. A. Young Lee, J. H. Kwon & M. W. Byun. 2005. Combination of gamma irradiation and CaCl2 immersion for a pectin-based biodegradable film. Carbohydrate polymers 60(4):547-551. https://doi.org/10.1016/j.carbpol.2005.02.016
Kratchanova, M., E. Pavlova, I. Panchev & C. Kratchanov. 1996. Influence of microwave pretreatment of fresh orange peels on pectin extraction. Progress in Biotechnology 14(1): 941- 946. https://doi.org/10.1016/S0921-0423(96)80337-6
Kumar, A. & G.S. Chauhan. 2010. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers 82(2):454–459. https://doi.org/10.1016/j.carbpol.2010.05.001
Masmoudi, M., S. Besbes, M. Chaabouni, C. Robert, M. Paquot, C. Blecker & H. Attia. 2008. Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers 74(2):185-192. https://doi.org/10.1016/j.carbpol.2008.02.003
Mollea, C., F. Chiampo & R. Conti. 2008. Extraction and characterization of pectins from cocoa husks: A preliminary study. Food Chemistry 107(3):1353–1356. https://doi.org/10.1016/j.foodchem.2007.09.006
Pagan, J. & A. Ibarz. 1999. Extraction and rheological properties of pectin from fresh peach pomace. Journal of Food Engineering 39(2):193–201. https://doi.org/10.1016/S0260-8774(98)00163-0
Pavlath, A. E., A. Voisin & G. H. Robertson. 1999. Pectin based biodegradable water insoluble films Application of polymers in foods. Macromolecular Symposium 140(1):107-113. https://doi.org/10.1002/masy.19991400112
Ptichkina, N.M., O.A. Markina & G.N. Rumyantseva. 2008. Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocolloids 22(1):192–195. https://doi.org/10.1016/j.foodhyd.2007.04.002
Ralet, M. C. & J. F. Thibault. 1994. Extraction and characterization of very highly methylated pectins from lemon cell walls. Carbohydrate Research 260(2):283–296. https://doi.org/10.1016/0008-6215(94)84046-6
Rezzoug, S. A., Z. Maache-Rezzoug, F. Sannier & K. Allaf. 2008. A thermomechanical preprocessing for pectin extraction from orange peel. Optimization by response surface methodology. International Journal of Food Engineering 4(1):1-18. http://dx.doi.org/10.2202/1556-3758.1183
Schieber, A., P. Hilt, P. Steker, H. U. Endre & C. Rentschler. 2003. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science and Emerging Technologies 4(1): 99-107. https://doi.org/10.1016/S1466-8564(02)00087-5
Shi, X. Q., K. C. Chang, J. G. Schwarz, D. P. Wiesenborn & M. C. Shih. 1996. Optimizing pectin extraction from sunflower heads by alkaline washing. Bioresource Technology 58(3):291-297. https://doi.org/10.1016/S0960-8524(96)00117-4
Sothornvit, R. & N. Pitak. 2007. Oxygen permeability and mechanical properties of banana films. Food Research International 40(3):365-370. https://doi.org/10.1016/j.foodres.2006.10.010
Ueno, H., M. Tanak, M. Hosino, M. Sasaki & M. Goto. 2008. Extraction of valuable compounds from the avedo of Citrus junos using subcritical water. Separation and Purification Technology 62(3):513–516. http://dx.doi.org/10.1016%2Fj.seppur.2008.03.004
Wang, S., F. Chen, J. Wu, Z. Wang, X. Liao & X. Hu. 2007. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering 78(2):693–700. https://doi.org/10.1016/j.jfoodeng.2005.11.008
Woo, K.K., Y.Y. Chong, S.K. Li Hiong & P.Y. Tang. 2010. Pectin extraction and characterizacion from red dragon fruit (Hylocereus polyrhizus): A preliminary study. Journal of Biological Sciences 10(7):631-636. http://dx.doi.org/10.3923/jbs.2010.631.636
Yeoh, S., J. Shi & T. A. G. Langrish. 2008. Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination 218(1-3):229–237. https://doi.org/10.1016/j.desal.2007.02.018
Yoo, S., M. L. Fishman, A. T. Hotchkiss & H. G. Lee. 2006. Viscometric behavior of high-methoxy and low-methoxy pectin solutions. Food Hydrocolloids 20(1):62–67. https://doi.org/10.1016/j.foodhyd.2005.03.003
Zamudio-Flores, P., L. Bello-Pérez, A. Vargas-Torres, J. Hernández- Uribe & C. Romero-Bastida. 2007. Caracterización parcial de películas preparadas con almidón oxidado de plátano. Agrociencia 41(8):837-844. https://www.redalyc.org/articulo.oa?id=30220203003
Zapata, A. D., C. A. Escobar, S. F. Cavalitto & R. Hours. 2008. Evaluación de la capacidad de solubilización de pectina de cáscara de limón usando protopectinasa-se. Vitae 16(1):67-74. http://sedici.unlp.edu.ar/handle/10915/117273
Publicado
Cómo citar
-
Resumen1010
-
PDF672
-
HTML179