El papel de los antimicrobianos en la estructura de las comunidades microbianas en la naturaleza
Rol of antimicrobials on the structure of microbial communities in nature
DOI:
https://doi.org/10.54167/tch.v5i1.701Palabras clave:
interacciones microbianas, simbiosis, parasitismo, competencia, bacteriasResumen
Los microambientes son estructuras complejas, en donde se encuentran en equilibrio una gran cantidad de organismos microscópicos, tanto eucariotes como procariotes, que interaccionan entre ellos y con los factores abióticos del medio. Para lograr el equilibrio entre los miembros de una comunidad microbiana, se establecen interacciones que resultan benéficas o perjudiciales para una de las especies que interaccionan, o para ambas. Entre estas interacciones, se encuentran: comensalismo, simbiosis, y parasitismo, entre otras. Estas interacciones les facilita a los microorganismos la obtención de compuestos que pueden ser utilizados como substratos o como complementos, asegurando así su sobrevivencia y mantenimiento en un ecosistema. Para sobrevivir, algunos microorganismos deben producir compuestos capaces de inhibir el desarrollo de microorganismos competidores. Estos compuestos, conocidos como antimicrobianos, pueden causar daño a la célula bacteriana competidora a través de diversos mecanismos de acción, pero el fin es cumplir con el mismo objetivo, la eliminación de la competencia microbiana. La producción industrial de algunos de estos antimicrobianos, han revolucionado nuestra forma de vida, al proporcionarnos herramientas para el control de enfermedades infecciosas.
Abstract
Microenvironments are natural complex structures, where microscopic organisms (both, eukaryotic and prokaryotic organisms) are in balance, by way of interactions among them and with the abiotic factors present in the environment. In order to achieve equilibrium between the members of a microbial community, different interactions are established, that are either beneficial or prejudicial to one or both interaction species. Among those interactions are commensalism, symbiosis and parasitism. The interactions support the acquirement of compounds that can be used as substrates or complements for microbial growth, assuring in this way, its survival and maintenance in the ecosystem. To survive, some microorganisms produce compounds capable of inhibiting the development of competitive microbiota. Those compounds, known as antimicrobials, can cause damage to the competitive microbial cell through different mechanisms of action, but the final goal is the same: to eliminate the competitive microbiota. Industrial production of some of those antimicrobials, have revolutionized our society, since they can be used to control infectious diseases.
Keywords: microbial interactions, symbiosis, parasitism, competition, bacteria.
Descargas
Citas
Abriouel,H., C. M. A. P. Franz, N. B. Omar & A. Gálvez. 2010. Diversity and applications of Bacillus bacteriocins. FEMS Microbiological Reviews 35(1): 201 – 232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
Balla, E., L. Dicks, M. Du Toit, M. Van Der Merwe & W. Holzapfel. 2000. Characterization and Cloning of the Genes Encoding Enterocin 1071A and Enterocin 1071B, Two Antimicrobial Peptides Produced by Enterococcus faecalis BFE 1071. Applied and Environmental Microbiology 66(4):1298 – 1304. https://doi.org/10.1128%2Faem.66.4.1298-1304.2000
Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews 3(3): 238 – 250. https://doi.org/10.1038/nrmicro1098
Cain, C. C., D. Lee, R. H. Waldo III, A. T. Henry, E. J. Casida Jr., M. C. Wani, M. E. Wall, N. H. Oberlies & J. O. Falkinham. 2003. Synergistic Antimicrobial Activity of Metabolites Produced by a Nonobligate Bacterial Predator. Antimicrobial Agents and Chemotherapy 47(7): 2113 – 2117. https://doi.org/10.1128%2FAAC.47.7.2113-2117.2003
Cantón, R. 2009. Antibiotic resistance genes from the environmental: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clinical Microbiology and Infection 15(Suppl 1): 20 – 25. https://doi.org/10.1111/j.1469-0691.2008.02679.x
Coraiola, M., R. Paletti, A. Flore, V. Fogliano & M. Dalla. 2008. Fuscopeptins, antimicrobial lipodepsopeptides from Pseudomonas fuscova, are channel forming active on biological and model membranes. Journal of Peptide Science 14(4): 496–502. https://doi.org/10.1002/psc.970
Daniels, C., M. Espinosa, J. Niqui, C. Michán & J. Ramos. 2010. Metabolic engineering, new antibiotics and biofilm viscoelasticity. Microbial Biotechnology 3(1): 10–14. https://doi.org/10.1111%2Fj.1751-7915.2009.00157.x
Debbad, A., A. H. Aly, W. H. Lin & P. Proksch. 2010. Bioactive compounds from marine bacteria and fungi. Microbial Biotechnology 3(5): 544 – 563. https://doi.org/10.1111%2Fj.1751-7915.2010.00179.x
Fernandes, P., I. de Souza, A. Amatto, A. de Araújo, A. Souto-Maior & E. Azevedo. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology 38(4): 704 – 709. http://dx.doi.org/10.1590/S1517-83822007000400022
Holtsmark, I., D. Mantzilas, V. G. H. Eijsink & M. B. Brurberg. 2006.Purification, Characterization, and Gene Sequence of Michiganin A, an Actagardine – Like Lantibiotic Produced by Tomato Pathogen Clavibacter michiganensis subsp. Michiganensis. Applied and Environmental Microbiology 72(9): 5814 – 5821. https://doi.org/10.1128/aem.00639-06
Lallo, R., G. Moonsamy, S. Ramchuran, J. Görgens & N. Gardiner. 2010. Competitive exclusion as a mode of action of Bacillus cereus aquaculture biological agent. Letters in Applied Microbiology 50(6): 563 – 570. https://doi.org/10.1111/j.1472-765x.2010.02829.x
León, J., G. Tapia & R. Ávalos. 2005. Purificación parcial y caracterización de una sustancia antimicrobiana producida por Alteromonas sp. de origen marino. Revista Peruana de Biología 12(3): 359 – 368. https://www.redalyc.org/articulo.oa?id=195018521004
Lucas, P., D. Gómez, F. Solano & A. Sánchez. 2006. The Antimicrobial Activity of Marinocine, Synthesize by Marinomonas mediterranea, Is Due to Hydrogen Peroxide Generated by Its Lysine Oxidase Activity. Journal of Bacteriology 188(7): 2493 – 2501. https://doi.org/10.1128/jb.188.7.2493-2501.2006
Mandryk, M. N., E. I. Kolomiets & E. S. Dey. 2007. Characterization of Antimicrobial Compounds Produced by Pseudomonas aurantiaca S-1. Polish Journal of Microbiology 56(4): 245 – 250. http://www.pjmonline.org/wp-content/uploads/2015/12/vol5642007245.pdf
Martín, A. M., E. Valdicia, M. Ruiz, J. J. Soler, M. Martín, M. Maqueda & M. Bueno. 2006. Characterization of Antimicrobial Substances Produced by Enterococcus faecalis MRR 10-3, Isolated from the Uropygial Gland of the Hoopoe. Applied and Environmental Microbiology 72(6): 4245 – 4249. https://doi.org/10.1128%2FAEM.02940-05
Moons, P., R. Van Houdt, A. Aertsen, K. Vanoirbeek, Y. Engelborghs & C. Michiels. 2006. Role of Quorum sensing and Antimicrobial Component Production by Serratia plymuthica in Formation of Biofilms, Including Mixed Biofilms with Escherichia coli. Applied and Environmental Microbiology 72(11): 7294 – 7300. https://doi.org/10.1128%2FAEM.01708-06
Nakayama, T., Y. Homma, Y. Hashidoko, J. Mizutani & S. Tahara. 1999. Possible Role of Xanthobaccins Produced by a Novel Strain of Bacillus subtilis Isolated from the Gastrointestinal Tracts of Healthy Chickens. Applied and Environmental Microbiology. 71: 4185 – 4190.
Ni, N., M. Li, J. Wang & B. Wang. 2009. Inhibitors and Antagonists of Bacterial Quorum sensing. Medicinal Research Reviews 29(1): 65 – 124. https://doi.org/10.1002/med.20145
Nishikawa, M. & K. Ogawa. 2002. Distribution of Microbes Producing Antimicrobial å-Poly-L-Lysine Polymers in Soil Microflora Determined and Novel Method. Applied and Environmental Microbiology 68(7): 3575–3581. https://doi.org/10.1128%2FAEM.68.7.3575-3581.2002
Reddy, B., K. Reddy, M. Rao & K. Rao. 2008. Efficacy of Antimicrobial Metabolites of Pseudomonas fluorescens Against Rice Fungal Pathogens. Current Trends in Biotechnology and Pharmacy 2(1): 178 – 182.
Riedlinger, J., S. Schrey, M. Tarkka, R. Hampp, M. Kapur & H. P. Fiedler. 2006. Auxofuran, a Novel Metabolite That Stimulates the Growth to Fly Agaric, Is Produced by Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505. Applied and Environmental Microbiology 72(5): 3550 – 3557. https://doi.org/10.1128%2FAEM.72.5.3550-3557.2006
Romero, M., J. Ramallo & L. Ploper L. 2008. Acción inhibitoria de una cepas de Zimomonas mobilis aislada de caña de azúcar sobre Xanthomonas citri subsp. citri agente causal de la cancriosis de los cítricos. Revista Industrial y Agrícola de Tucumán 85(1):17 – 22. http://www.scielo.org.ar/scielo.php?pid=S1851-30182008000100003&script=sci_arttext
Sebat, J., A. Paszczynski, M. Cortese & R. Clawford R. 2001. Antimicrobial Properties of Pyridine-2,6-Dithiocarboxilic Acid, a Metal Chelator Produced by Pseudomonas spp. Applied and Environmental Microbiology 67(9): 3934 – 3942. https://doi.org/10.1128%2FAEM.67.9.3934-3942.2001
Segura, A., P. de Wit & G. Preston. 2009. Life of microbes that Interact with plants. Microbial Biotechnology 2(4): 412 – 415. https://doi.org/10.1111%2Fj.1751-7915.2009.00129.x
Verma, T., S. K. Garg & P. W. Ramteke. 2009. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. Journal of Applied Microbiology 107(5): 1425 – 1432. https://doi.org/10.1111/j.1365-2672.2009.04326.x
Yalçin, E. & A. Ergene. 2009. Screening the Antimicrobial Activity of Biosurfactants Produced by Microorganisms Isolated from Refinery Wastewaters. Journal of Applied Biological Sciences 3(2): 148 – 153. https://www.jabsonline.org/index.php/jabs/article/view/149
Yeo, A. & H. Meng. 2005. Inhibition of Clostridium perfringens by Stenotrophomonas sp. Strain SB-K88 in Suppression of Sugar Beet Damping-Off Disease. Applied and Environmental Microbiology 65: 4334 – 4339.
Publicado
Cómo citar
-
Resumen310
-
PDF143
-
HTML46