La terapia fotodinámica promete revolucionar el tratamiento del cáncer

Photodynamic Therapy Promises to Revolutionize Cancer Treatment

Autores/as

DOI:

https://doi.org/10.54167/tch.v17i4.1355

Palabras clave:

cáncer, fotoquímica, fotosensibilizador, metales, quimioterapia

Resumen

El cáncer es una de las enfermedades que más afecta a la población mundial. Los tratamientos más aplicados son la cirugía, la radioterapia y la quimioterapia. La quimioterapia consiste en el uso de fármacos para destruir las células cancerosas. Sin embargo, puede presentar baja eficiencia, resistencia al tratamiento, y debido a la falta de selectividad del fármaco, provocar efectos secundarios severos. Debido a estas limitaciones, han surgido terapias emergentes, como la terapia fotodinámica (PDT, por sus siglas en inglés). La PDT consiste en administrar al tumor un fotosensibilizador (PS, por sus siglas en inglés), el cual es posteriormente estimulado con una fuente de luz y se producen especies reactivas de oxígeno tóxicas para las células. La PDT ofrece una mayor selectividad hacia las células cancerosas ya que el fotosensibilizador puede inyectarse y activarse de manera localizada y de esta manera no afectar a otros órganos cercanos. Se espera que la PDT en un futuro cercano pudiera ser una terapia valiosa para el tratamiento del cáncer y permitir una mejora en la calidad de vida de los pacientes.

DOI: https://doi.org/10.54167/tch.v17i4.1355

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C., & Golab ,J. (2011). Photodynamic therapy of cancer: an update. CA: A Cancer J. Clinicians, 61: 250–281. https://doi.org/10.3322/caac.20114

Algorri, J. F., Ochoa, M., Roldán-Varona, P., Rodríguez-Cobo, L., & López-Higuera, J.M. (2021). Light technology for efficient and effective photodynamic therapy: a critical review. Cancers, 13: 3484. https://doi.org/10.3390/cancers13143484

Bazylińska, U., Pietkiewicz, J., Saczko, J., Nattich-Rak, M., Rossowska, J., Garbiec, A., & Wilk, K. A. (2012). Nanoemulsion-templated multilayer nanocapsules for cyanine-type photosensitizer delivery to human breast carcinoma cells. Eur. J. Pharm. Sci., 47: 406–420. https://doi.org/10.1016/j.ejps.2012.06.019

Bellnier, D. A., Greco, W. R., Loewen, G. M., Nava, H., Oseroff, A. R., & Dougherty, T. J. (2006). Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (photochlor) and 5-ALA-induced protoporphyrin IX. Laser Surg. Med., 38: 439-444. https://doi.org/10.1002/lsm.20340

Brown, S. B., Brown, E. A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol., 8: 497–508. https://doi.org/10.1016/S1470-2045(04)01529-3

Calzavara-Pinton, P. G, Venturini, M., & Sala, R. (2007). Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology. J. Eur. Acad. Dermatol Venereol., 3: 293-302. https://doi.org/10.1111/j.1468-3083.2006.01902.x

Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther., 4: 279-93. https://doi.org/10.1016/S1572-1000(05)00007-4

Chen, J., Fan, T., Xie, Z., Zeng, Q., Xue, P., Zheng, T., Chen, Y., Luo, X., & Zhang, H. (2020). Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials, 237: 119827. https://doi.org/10.1016/j.biomaterials.2020.119827

Colin P., Estevez, J. P., Betrouni, N., Ouzzane, A., Puech, P., Leroy, X., Biserte, J., Villers A., & Mordon, S., (2011). Photodynamic therapy and prostate cancer. Progrès en Urologie, 21: 85-92. https://doi.org/10.1016/j.purol.2010.07.018

Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T., & Yang, Z. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics, 9: 13. 1332. https://doi.org/10.3390/pharmaceutics13091332

Cosa, G., Nonell, S., Aubry, J. M., Anquez, F., Kanofsky, Fresnadillo, J. D., Ogilby, P., San Román, E., Frochot, C., & Geddes, C. (2016). Singlet oxygen: applications in biosciences and nanosciences. Royal Society of Chemistry. https://search.worldcat.org/es/title/singlet-oxygen-applications-in-biosciences-and-nanoscience s/oclc/957350981

Dos Santos, A. L. F., De Almeida, D. R. Q., Terra, L. F., Baptista, M., & Labriola, L. (2019). Photodynamic therapy in cancer treatment - an update review. J. Cancer Metastasis Treat., 5: 25. http://dx.doi.org/10.20517/2394-4722.2018.83

Escudero, A., Carrillon-Carrión, C., Castillejos, M. A., Romero-Ben, E., Rosales-Barrios, C., & Khiar, N. (2021). Photodynamic therapy: photosensitizers and nanostructures. Mater. Chem. Front., 5: 3788. https://doi.org/10.1039/D0QM00922A

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, DM., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: an overview. Int. J. Cancer., 149: 778-789. https://doi.org/10.1002/ijc.33588

Gourdon, L., Cariou, K., & Gasser, G. (2022). Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem. Soc. Rev., 51: 1167–1195. https://doi.org/10.1039/D1CS00609F

Gunaydin, G., Gedik, E., & Ayan, S. (2021). Photodynamic therapy for the treatment and diagnosis of cancer — a review of the current clinical status. Front. Chem., 9: 686303. https://doi.org/10.3389/fchem.2021.686303

Hamblin, M. R. (2020). Photodynamic therapy for cancer: what’s past is prologue. Photochem. Photobiol., 96: 506–516. https://doi.org/10.1111/php.13190

Hu, T., Wang, Z., Shen, W., Liang, R., Yan, D., & Wei, M. (2021). Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 7: 3278-3300. https://doi.org/10.7150/thno.54227

Imberti, C., Zhang P., Huang, H., & Sadler, P. J. (2020). New designs for phototherapeutic transition metal complexes. Angew. Chem., Int. Ed. Engl., 59: 61–73. https://doi.org/10.1002/anie.201905171

Karges, J. (2022). Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem., Int. Ed. Engl., 61: e202112236. https://doi.org/10.1002/anie.202112236

Li, X., Lovell J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 11 : 657–674. https://doi.org/10.1038/s41571-020-0410-2

Mari, C., Pierroz, V., Ferrari, S., & Gasser, G. (2015). Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem. Sci., 6: 2660–2686. https://doi.org/10.1039/C4SC03759F

McFarland, S. A., Mandel, A., Dumoulin-White, R., & Gasser, G. (2020). Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology?. Curr. Opin. Chem. Biol., 56: 23-27. https://doi.org/10.1016/j.cbpa.2019.10.004

Monro, S., Colón, K. L., Yin, H., Roque III, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., & McFarland, S. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of tld1433. Chem. Rev., 119: 797–828. https://doi.org/10.1021/acs.chemrev.8b00211

O’Connor, A., Gallagher, W. M., & Byrne, A. T. (2009). Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 85: 1053-1074. https://doi.org/10.1111/j.1751-1097.2009.00585.x

Parab, S., Achalla, P. K., Yanamandala, N., Singhvi, G., Kesharwani, P., & Dubey, S. K. (2023). Nanomaterials for photodynamic therapy. In Sensitizers in photodynamic therapy (pp. 81-103). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85595-2.00002-5

Savjani, K, T., Gajjar, A. K., & Savjani J. S. (2012). Drug solubility: importance and enhancement techniques. Inter. Sch. Res. Notices, 2012: 195727. https://doi.org/10.5402/2012/195727

Shafirstein, G., Bellnier, D., Oakley, E., Hamilton, S., Potasek, M., Beeson, K., & Parilov, E. (2017). Interstitial photodynamic therapy—A focused review. Cancers, 9: 12. 12. https://doi.org/10.3390/cancers9020012

Sivasubramanian, M., Chuang, Y. C., & Lo, L. W. (2019) Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules, 24: 520. https://doi.org/10.3390/molecules24030520

Smith, C. B., Days L. C., Alajroush, D. R., Faye, K., Khodour, Y., Beebe S. J., & Holder, A. A. (2021). Photodynamic therapy of inorganic complexes for the treatment of cancer. Photochem. Photobiol., 98: 17-41. https://doi.org/10.1111/php.13467

Therrien, B. (2013). Transporting and shielding photosensitisers by using water-soluble organometallic cages: A new strategy in drug delivery and photodynamic therapy. Chem. Eur. J., 19: 8378-8386. https://doi.org/10.1002/chem.201301348

Usuda, J., Kato, H., Okunaka, T., Furukawa K., Tsutsui, H., Yamada, K., Suga, Y., Honda, H., Nagatsuka, Y., Ohira, T., Tsuboi, M., & Hirano, T. (2006). Photodynamic therapy (PDT) for lung cancers. J. Thorac. Oncol., 1: 489–493. https://doi.org/10.1016/S1556-0864(15)31616-6

Veld Huis In 't, R. V., Heuts, J., Ma, S., Cruz, L. J., Ossendorp, F. A., & Jager, M. J. (2023). Current challenges and opportunities of photodynamic therapy against cancer. Pharmaceutics, 15: 330. https://doi.org/10.3390/pharmaceutics15020330

Wang, K. K., Song, S., Jung, S. J., Hwang, J. W., Kim, M. G., Kim, J. H., Sung, J., Lee, J. K. & Kim, Y. R. (2020). Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Phys. Chem. Chem. Phys., 22: 21664-21671. https://doi.org/10.1039/D0CP00739K

Zhang, J., Jiang, C., Figueiró Longo, J. P., Azevedo, R. B., Zhang, H., & Muehlmann, L. A. (2018). An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B, 2: 137-146. https://doi.org/10.1016/j.apsb.2017.09.003

Zhang, Y., Doan, B. T., & Gasser, G. (2023). Metal-based photosensitizers as inducers of regulated cell death mechanisms. Chem. Rev., :123: 16. 10135–10155. https://doi.org/10.1021/acs.chemrev.3c00161

Zheng, Y., Li, Z., Chen, H., & Gao, Y. (2020). Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur. J. Pharm. Sci., 144: 105213. https://doi.org/10.1016/j.ejps.2020.105213

Descargas

Publicado

2023-12-28

Cómo citar

Verget, L., Murillo Rodríguez, M. I., Restrepo Acevedo, A. C., & Le Lagadec, R. (2023). La terapia fotodinámica promete revolucionar el tratamiento del cáncer: Photodynamic Therapy Promises to Revolutionize Cancer Treatment. TECNOCIENCIA Chihuahua, 17(4), e1355. https://doi.org/10.54167/tch.v17i4.1355
Metrics
Vistas/Descargas
  • Resumen
    341
  • PDF
    226
  • HTLM
    16

Métrica