From papyrus to flexible electronic devices: The revolution of cellulose nanofibrils

De los papiros a los dispositivos electrónicos flexibles: la revolución de las nanofibrillas de celulosa

Autores/as

DOI:

https://doi.org/10.54167/tch.v17i4.1333

Palabras clave:

nanofibrilas de celulosa, dispositivos electrónicos flexibles, diodos orgánicos emisores de luz, transistores, dispositivos de almacenamiento de energía

Resumen

El aislamiento de las nanofibrillas de celulosa a partir de fibras de celulosa, el principal componente del papel, ha proporcionado oportunidades novedosas y apasionantes para el desarrollo de dispositivos electrónicos flexibles y más respetuosos con el medio ambiente. Un importante campo de trabajo se ha centrado en el uso de las nanofibrillas de celulosa como soporte para producir electrónica flexible debido a las ventajas del material, entre las que destacan su gran resistencia mecánica (es más fuerte que la mayoría de los plásticos), su alta transparencia y su estabilidad térmica. Asimismo, recientemente se ha explorado el uso de las nanofibrillas de celulosa como componente funcional en el desarrollo de dispositivos electrónicos flexibles, en sustitución de la capa dieléctrica en transistores, o como electrolito para dispositivos de almacenamiento de energía. Teniendo en cuenta las propiedades sorprendentes de las nanofibrillas de celulosa y la importancia en reducir el impacto ambiental de los dispositivos electrónicos, se espera que las nanofibrillas de celulosa desempeñen una función crucial en el desarrollo de la electrónica flexible de próxima generación.

DOI: https://doi.org/10.54167/tch.v17i4.1333

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, M., Afzal, A. M., Iqbal, M. W., Mumtaz, S., Imran, M., Ashraf, F., Ur Rehman, A., & Muhammad, F. (2022). 2D-TMDs based electrode material for supercapacitor applications. International Journal of Energy Research 46(15): 22336–22364. https://doi.org/10.1002/er.8698

American Forest & Paper Association. (2021). The History of Paper. https://rb.gy/8qtssf

Capua, R. (2015). Papyrus-Making in Egypt. https://rb.gy/5rsaai

Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q. & Huang, W. (2010). Recent developments in top-emitting organic light-emitting diodes. Advanced Materials 22(46): 5227–5239. https://doi.org/10.1002/adma.201001167

Chen, W., Yu, H., Lee, S. Y., Wei, T., Li, J. & Fan, Z. (2018). Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews 47(8): 2837–2872. https://doi.org/10.1039/c7cs00790f

Corzo, D., Tostado-Blázquez, G. & Baran, D. (2020). Flexible Electronics: Status, Challenges and Opportunities. Frontier Electronics 1:13. https://doi.org/https://doi.org/10.3389/felec.2020.594003

Dai, S., Chu, Y., Liu, D., Cao, F., Wu, X., Zhou, J., Zhou, B., Chen, Y. & Huang, J. (2018). Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nature Communications 9(1): 2737. https://doi.org/10.1038/s41467-018-05155-y

Emsley, A. M. & Stevens, G. C. (1994). Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IEE Proceedings - Science, Measurement and Technology 141(5): 324–334. https://doi.org/10.1049/ip-smt:19949957

Hoeng, F., Denneulin, A. & Bras, J. (2016). Use of nanocellulose in printed electronics: A review. Nanoscale 8(27): 13131–13154. https://doi.org/10.1039/c6nr03054h

Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J. & Hu, L. (2013). Highly transparent and flexible nanopaper transistors. ACS Nano 7(3): 2106–2113. https://doi.org/10.1021/nn304407r

Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. (2020). Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science and Applications 9(1): 105. https://doi.org/10.1038/s41377-020-0341-9

Ian Tiseo. (n.d.). (2023) Electronic waste generated worldwide from 2010 to 2019 (in million metric tons). Statista https://www.statista.com/statistics/499891/projection-ewaste-generation-worldwide/

Jung, Y. H., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H., Kim, M., Cho, S. J., Park, D. W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S. & Ma, Z. (2015). High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications 6: 7170. https://doi.org/10.1038/ncomms8170

Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., Abas, Z. & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology 2: 197–213. https://doi.org/10.1007/s40684-015-0024-9

Luginieski, M., Koehler, M., Serbena, J. P. M. & Seidel, K. F. (2023). General Model for Charge Carriers Transport in Electrolyte-Gated Transistors. Advanced Theory and Simulations 6(5): 2200852. https://doi.org/10.1002/adts.202200852

Nickerson, R. F. & Harree, J. A. (1947). Cellulose Intercrystalline Structure study by hydrolytic method. Ind. Eng. Chem. 39(11): 1507–1512. https://doi.org/10.1021/ie50455a024

Nogi, M. & Yano, H. (2008). Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Advanced Materials 20(10): 1849–1852. https://doi.org/10.1002/adma.200702559

Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. (2009). Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69(11–12): 1958–1961. https://doi.org/10.1016/j.compscitech.2009.04.017

Pan, R., Xu, X., Sun, R., Wang, Z., Lindh, J., Edström, K., Strømme, M. & Nyholm, L. (2018). Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Nano-Micro Small 14(21): 1704371. https://doi.org/10.1002/smll.201704371

Rajinipriya, M., Nagalakshmaiah, M., Robert, M. & Elkoun, S. (2018). Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry and Engineering 6(3): 2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

Tanguy, N. R., Moradpour, M., Jain, M. C., Yan, N. & Zarifi, M. H. (2023). Transient and recyclable organic microwave resonator using nanocellulose for 5G and Internet of Things applications. Chemical Engineering Journal 466: 143061. https://doi.org/10.1016/j.cej.2023.143061

Tao, J., Wang, R., Yu, H., Chen, L., Fang, D., Tian, Y., Xie, J., Jia, D., Liu, H., Wang, J., Tang, F., Song, L. & Li, H. (2020). Highly Transparent, Highly Thermally Stable Nanocellulose/Polymer Hybrid Substrates for Flexible OLED Devices. ACS Applied Materials and Interfaces 12(8): 9701–9709. https://doi.org/10.1021/acsami.0c01048

Thomas, B., Raj, M. C., Athira, B. K., Rubiyah, H. M., Joy, J., Moores, A., Drisko, G. L. & Sanchez, C. (2018). Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews 118(24): 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627

Van Den Berg, O., Schroeter, M., Capadona, J. R. & Weder, C. (2007). Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Journal of Materials Chemistry 17(26): 2746–2753. https://doi.org/10.1039/b700878c

Wawrzyniak, M., Denneulin, A., Vuong, T. P. & Bras, J. (2021). Nanocellulose-based materials and composites for electromagnetism and radio frequencies applications. In Sabu Thomas, Yasir Beeran Pottathara (Eds) Micro and Nano Technologies, Nanocellulose Based Composites for Electronics (pp. 101–124). Elsevier. https://doi.org/10.1016/b978-0-12-822350-5.00005-9

Yang, C., Wu, Q., Xie, W., Zhang, X., Brozena, A., Zheng, J., Garaga, M. N., Ko, B. H., Mao, Y., He, S., Gao, Y., Wang, P., Tyagi, M., Jiao, F., Briber, R., Albertus, P., Wang, C., Greenbaum, S., Hu, Y. Y., … Hu, L. (2021). Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598: 590–596. https://doi.org/10.1038/s41586-021-03885-6

Zhang, L., Qin, X., Zhao, S., Wang, A., Luo, J., Wang, Z. L., Kang, F., Lin, Z. & Li, B. (2020). Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries. Advanced Materials 32(24): 1908445. https://doi.org/10.1002/adma.201908445

Zhang, Y., Liu, K., Liu, X., Ma, W., Li, S., Zhou, Q., Pan, H. & Fan, S. (2022). Nanocellulose/Reduced Graphene Oxide Composite Hydrogels for High-Volumetric Performance Symmetric Supercapacitors. Energy and Fuels 36(15): 8506–8514. https://doi.org/10.1021/acs.energyfuels.2c01786

Descargas

Publicado

2023-12-21

Cómo citar

Tanguy, N. R., & Le Lagadec, R. (2023). From papyrus to flexible electronic devices: The revolution of cellulose nanofibrils: De los papiros a los dispositivos electrónicos flexibles: la revolución de las nanofibrillas de celulosa. TECNOCIENCIA Chihuahua, 17(4), e1333. https://doi.org/10.54167/tch.v17i4.1333
Metrics
Vistas/Descargas
  • Resumen
    131
  • PDF
    62
  • HTLM
    39

Métrica

Artículos más leídos del mismo autor/a