From papyrus to flexible electronic devices: The revolution of cellulose nanofibrils
De los papiros a los dispositivos electrónicos flexibles: la revolución de las nanofibrillas de celulosa
DOI:
https://doi.org/10.54167/tch.v17i4.1333Palabras clave:
nanofibrilas de celulosa, dispositivos electrónicos flexibles, diodos orgánicos emisores de luz, transistores, dispositivos de almacenamiento de energíaResumen
El aislamiento de las nanofibrillas de celulosa a partir de fibras de celulosa, el principal componente del papel, ha proporcionado oportunidades novedosas y apasionantes para el desarrollo de dispositivos electrónicos flexibles y más respetuosos con el medio ambiente. Un importante campo de trabajo se ha centrado en el uso de las nanofibrillas de celulosa como soporte para producir electrónica flexible debido a las ventajas del material, entre las que destacan su gran resistencia mecánica (es más fuerte que la mayoría de los plásticos), su alta transparencia y su estabilidad térmica. Asimismo, recientemente se ha explorado el uso de las nanofibrillas de celulosa como componente funcional en el desarrollo de dispositivos electrónicos flexibles, en sustitución de la capa dieléctrica en transistores, o como electrolito para dispositivos de almacenamiento de energía. Teniendo en cuenta las propiedades sorprendentes de las nanofibrillas de celulosa y la importancia en reducir el impacto ambiental de los dispositivos electrónicos, se espera que las nanofibrillas de celulosa desempeñen una función crucial en el desarrollo de la electrónica flexible de próxima generación.
Descargas
Citas
Ali, M., Afzal, A. M., Iqbal, M. W., Mumtaz, S., Imran, M., Ashraf, F., Ur Rehman, A., & Muhammad, F. (2022). 2D-TMDs based electrode material for supercapacitor applications. International Journal of Energy Research 46(15): 22336–22364. https://doi.org/10.1002/er.8698
American Forest & Paper Association. (2021). The History of Paper. https://rb.gy/8qtssf
Capua, R. (2015). Papyrus-Making in Egypt. https://rb.gy/5rsaai
Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q. & Huang, W. (2010). Recent developments in top-emitting organic light-emitting diodes. Advanced Materials 22(46): 5227–5239. https://doi.org/10.1002/adma.201001167
Chen, W., Yu, H., Lee, S. Y., Wei, T., Li, J. & Fan, Z. (2018). Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews 47(8): 2837–2872. https://doi.org/10.1039/c7cs00790f
Corzo, D., Tostado-Blázquez, G. & Baran, D. (2020). Flexible Electronics: Status, Challenges and Opportunities. Frontier Electronics 1:13. https://doi.org/https://doi.org/10.3389/felec.2020.594003
Dai, S., Chu, Y., Liu, D., Cao, F., Wu, X., Zhou, J., Zhou, B., Chen, Y. & Huang, J. (2018). Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nature Communications 9(1): 2737. https://doi.org/10.1038/s41467-018-05155-y
Emsley, A. M. & Stevens, G. C. (1994). Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IEE Proceedings - Science, Measurement and Technology 141(5): 324–334. https://doi.org/10.1049/ip-smt:19949957
Hoeng, F., Denneulin, A. & Bras, J. (2016). Use of nanocellulose in printed electronics: A review. Nanoscale 8(27): 13131–13154. https://doi.org/10.1039/c6nr03054h
Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J. & Hu, L. (2013). Highly transparent and flexible nanopaper transistors. ACS Nano 7(3): 2106–2113. https://doi.org/10.1021/nn304407r
Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. (2020). Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science and Applications 9(1): 105. https://doi.org/10.1038/s41377-020-0341-9
Ian Tiseo. (n.d.). (2023) Electronic waste generated worldwide from 2010 to 2019 (in million metric tons). Statista https://www.statista.com/statistics/499891/projection-ewaste-generation-worldwide/
Jung, Y. H., Chang, T. H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H., Kim, M., Cho, S. J., Park, D. W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S. & Ma, Z. (2015). High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications 6: 7170. https://doi.org/10.1038/ncomms8170
Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., Abas, Z. & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology 2: 197–213. https://doi.org/10.1007/s40684-015-0024-9
Luginieski, M., Koehler, M., Serbena, J. P. M. & Seidel, K. F. (2023). General Model for Charge Carriers Transport in Electrolyte-Gated Transistors. Advanced Theory and Simulations 6(5): 2200852. https://doi.org/10.1002/adts.202200852
Nickerson, R. F. & Harree, J. A. (1947). Cellulose Intercrystalline Structure study by hydrolytic method. Ind. Eng. Chem. 39(11): 1507–1512. https://doi.org/10.1021/ie50455a024
Nogi, M. & Yano, H. (2008). Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Advanced Materials 20(10): 1849–1852. https://doi.org/10.1002/adma.200702559
Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. (2009). Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69(11–12): 1958–1961. https://doi.org/10.1016/j.compscitech.2009.04.017
Pan, R., Xu, X., Sun, R., Wang, Z., Lindh, J., Edström, K., Strømme, M. & Nyholm, L. (2018). Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Nano-Micro Small 14(21): 1704371. https://doi.org/10.1002/smll.201704371
Rajinipriya, M., Nagalakshmaiah, M., Robert, M. & Elkoun, S. (2018). Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry and Engineering 6(3): 2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437
Tanguy, N. R., Moradpour, M., Jain, M. C., Yan, N. & Zarifi, M. H. (2023). Transient and recyclable organic microwave resonator using nanocellulose for 5G and Internet of Things applications. Chemical Engineering Journal 466: 143061. https://doi.org/10.1016/j.cej.2023.143061
Tao, J., Wang, R., Yu, H., Chen, L., Fang, D., Tian, Y., Xie, J., Jia, D., Liu, H., Wang, J., Tang, F., Song, L. & Li, H. (2020). Highly Transparent, Highly Thermally Stable Nanocellulose/Polymer Hybrid Substrates for Flexible OLED Devices. ACS Applied Materials and Interfaces 12(8): 9701–9709. https://doi.org/10.1021/acsami.0c01048
Thomas, B., Raj, M. C., Athira, B. K., Rubiyah, H. M., Joy, J., Moores, A., Drisko, G. L. & Sanchez, C. (2018). Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews 118(24): 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627
Van Den Berg, O., Schroeter, M., Capadona, J. R. & Weder, C. (2007). Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. Journal of Materials Chemistry 17(26): 2746–2753. https://doi.org/10.1039/b700878c
Wawrzyniak, M., Denneulin, A., Vuong, T. P. & Bras, J. (2021). Nanocellulose-based materials and composites for electromagnetism and radio frequencies applications. In Sabu Thomas, Yasir Beeran Pottathara (Eds) Micro and Nano Technologies, Nanocellulose Based Composites for Electronics (pp. 101–124). Elsevier. https://doi.org/10.1016/b978-0-12-822350-5.00005-9
Yang, C., Wu, Q., Xie, W., Zhang, X., Brozena, A., Zheng, J., Garaga, M. N., Ko, B. H., Mao, Y., He, S., Gao, Y., Wang, P., Tyagi, M., Jiao, F., Briber, R., Albertus, P., Wang, C., Greenbaum, S., Hu, Y. Y., … Hu, L. (2021). Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598: 590–596. https://doi.org/10.1038/s41586-021-03885-6
Zhang, L., Qin, X., Zhao, S., Wang, A., Luo, J., Wang, Z. L., Kang, F., Lin, Z. & Li, B. (2020). Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries. Advanced Materials 32(24): 1908445. https://doi.org/10.1002/adma.201908445
Zhang, Y., Liu, K., Liu, X., Ma, W., Li, S., Zhou, Q., Pan, H. & Fan, S. (2022). Nanocellulose/Reduced Graphene Oxide Composite Hydrogels for High-Volumetric Performance Symmetric Supercapacitors. Energy and Fuels 36(15): 8506–8514. https://doi.org/10.1021/acs.energyfuels.2c01786
Publicado
Cómo citar
-
Resumen131
-
PDF62
-
HTLM39