Mecanoquímica: una herramienta importante en la reactividad en el Estado Sólido
Mechanochemistry: an important tool in solid-state reactivity
DOI:
https://doi.org/10.54167/tch.v16i2.973Palabras clave:
mecanoquímica, química verde, química medicinal, reacciones en estado sólidoResumen
Los inicios de la mecanoquímica pueden remontarse a la prehistoria teniendo registro de su uso en la era de la Grecia antigua presentando importantes avances a inicios del siglo XIX con los trabajos de Lea Carey (considerado el primer mecanoquímico) y de Michael Faraday. A pesar de que la mecanoquímica se conoce desde hace mucho tiempo, esta herramienta sintética no ha recibido la suficiente atención por varias comunidades científicas como un método de preparación robusto de compuestos químicos. Se pueden enumerar distintos factores de este poco entusiasmo hacia la mecanoquímica, siendo los principales la falta de terminología y nomenclatura común, aunado al poco entendimiento de los procesos mecanísticos involucrados (identificación de intermediarios o proposición de mecanismos de reacción). Aún con estas disyuntivas, los métodos mecanoquímicos son procesos de preparación con un alto valor de importancia desde el punto de vista de la Química Verde, ya que las reacciones pueden llevarse a cabo en ausencia o en cantidades catalíticas de disolvente, evitándose el uso de grandes cantidades de este medio. Así, en esta revisión se busca dar un panorama de la situación actual de la mecanoquímica y su uso en distintas áreas de la ciencia.
Descargas
Citas
Anastas, P.T., Warner, J.C., 1998. Green Chemistry: Theory and Practice. Oxford University Press.
Andersen, J., Mack, J., 2018. Mechanochemistry and organic synthesis: From mystical to practical. Green Chem. 20, 1435–1443. https://doi.org/10.1039/C7GC03797J
Ardila-Fierro, K.J., Hernández, J.G., 2021. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem 14, 2145–2162. https://doi.org/10.1002/cssc.202100478
Ariel, S., Askari, S., Scheffer, J.R., Trotter, J., 1989. Latent photochemical hydrogen abstraction reactions realized in crystalline media. J. Org. Chem. 54, 4324–4330. https://doi.org/10.1021/jo00279a019
Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., Wieczorek-Ciurowa, K., 2013. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637. https://doi.org/10.1039/C3CS35468G
Beillard, A., Métro, T.X., Bantreil, X., Martinez, J., Lamaty, F., 2017. Cu(0), O2 and mechanical forces: a saving combination for efficient production of Cu-NHC complexes. Chem. Sci. 8, 1086–1089. https://doi.org/10.1039/C6SC03182J
Boldyrev, V. V., 1986. Mechanochemistry of Inorganic Solids. Proc. Indian Natl. Sci. Acad. Part A 52, 400–417.
Boldyreva, E., 2013. Mechanochemistry of inorganic and organic systems: What is similar, what is different? Chem. Soc. Rev. 42, 7719–7738. https://doi.org/https://doi.org/10.1039/C3CS60052A
Bowmaker, G.A., 2013. Solvent-assisted mechanochemistry. Chem. Commun. 49, 334–348. https://doi.org/DOI https://doi.org/10.1039/C2CC35694E
Braga, D., D’Addario, D., Giaffreda, S.L., Maini, L., Polito, M., Grepioni, F., 2005. Intra-solid and inter-solid reactions of molecular crystals: A green route to crystal engineering. Top. Curr. Chem. 254, 71–94. https://doi.org/https://doi.org/10.1007/b100996
Braga, D., Grepioni, F., 2004. Reactions between or within molecular crystals. Angew. Chemie - Int. Ed. 43, 4002–4011. https://doi.org/https://doi.org/10.1002/anie.200301721
Bučar, D.K., Friščić, T., 2019. Professor William Jones and His Materials Chemistry Group: Innovations and Advances in the Chemistry of Solids. Cryst. Growth Des. 19, 1479–1487. https://doi.org/https://doi.org/10.1021/acs.cgd.9b00090
Cheung, E., Kang, T., Scheffer, J.R., Trotter, J., 2000. Latent chemical behavior revealed in the crystalline state: Novel photochemistry of a cis-9-decalyl aryl ketone. Chem. Commun. 2309–2310. https://doi.org/https://doi.org/10.1039/B007398I
Friščić, T., 2010. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 20, 7599–7605. https://doi.org/https://doi.org/10.1039/C0JM00872A
Friščić, T., Childs, S.L., Rizvi, S.A.A., Jones, W., 2009. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 11, 418–426. https://doi.org/https://doi.org/10.1039/B815174A
Friščič, T., Jones, W., 2009. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst. Growth Des. 9, 1621–1637. https://doi.org/https://doi.org/10.1021/cg800764n
Friščić, T., Mottillo, C., Titi, H.M., 2020. Mechanochemistry for Synthesis. Angew. Chemie - Int. Ed. 59, 1018–1029. https://doi.org/https://doi.org/10.1002/anie.201906755
Garcia-Gabibay, M.A., 2003. Engineering carbene rearrangements in crystals: From molecular information to solid-state reactivity. Acc. Chem. Res. 36, 491–498. https://doi.org/https://doi.org/10.1021/ar970309w
Germán-Acacio, J.M., 2009. Construcción de materiales cristalinos híbridos orgánico-inorgánico por medio de enlaces de hidrógeno (Tesis Doctoral). Universidad Nacional Autónoma de México. https://repositorio.unam.mx/contenidos/101305
Germann, L.S., Arhangelskis, M., Etter, M., Dinnebier, R.E., Friščić, T., 2020a. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chem. Sci. 11, 10092–10100. https://doi.org/https://doi.org/10.1039/D0SC03629C
Germann, L.S., Emmerling, S.T., Wilke, M., Dinnebier, R.E., Moneghini, M., Hasa, D., 2020b. Monitoring polymer-assisted mechanochemical cocrystallisation through in situ X-ray powder diffraction. Chem. Commun. 56, 8743–8746. https://doi.org/https://doi.org/10.1039/D0CC03460F
Gómez-Benítez, V., Germán-Acacio, J.M., Morales-Morales, D., 2022. Mechanochemistry a Promising Tool on the Synthesis of Organometallic Pincer Compounds. Current State and Future Perspectives. Curr. Org. Chem. 26, 438–443. https://doi.org/https://doi.org/10.2174/1385272826666220214110600
Gomollón-Bel, F., 2019. Ten Chemical Innovations That Will Change Our World. Chem. Int. 41, 12–17. https://doi.org/https://doi.org/10.1515/ci-2020-0402
Gonnet, L., Lennox, C.B., Do, J.L., Malvestiti, I., Koenig, S.G., Nagapudi, K., Friščić, T., 2022. Metal-Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angew. Chemie - Int. Ed. 61, e202115030. https://doi.org/https://doi.org/10.1002/anie.202115030
Hasa, D., Jones, W., 2017. Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Adv. Drug Deliv. Rev. 117, 147–161. https://doi.org/https://doi.org/10.1016/j.addr.2017.05.001
Hasa, D., Miniussi, E., Jones, W., 2016. Mechanochemical Synthesis of Multicomponent Crystals: One Liquid for One Polymorph? A Myth to Dispel. Cryst. Growth Des. 16, 4582–4588. https://doi.org/https://doi.org/10.1021/acs.cgd.6b00682
Hasa, D., Schneider Rauber, G., Voinovich, D., Jones, W., 2015. Cocrystal Formation through Mechanochemistry: From Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding. Angew. Chemie - Int. Ed. 54, 7371–7375. https://doi.org/https://doi.org/10.1002/anie.201501638
Hernández, J.G., 2017. C−H Bond Functionalization by Mechanochemistry. Chem. - A Eur. J. 23, 17157–17165. https://doi.org/https://doi.org/10.1002/chem.201703605
Hernández, J.G., Bolm, C., 2017. Altering Product Selectivity by Mechanochemistry. J. Org. Chem. 82, 4007–4019. https://doi.org/https://doi.org/10.1021/acs.joc.6b02887
IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, a G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C., 2012. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447. https://doi.org/https://doi.org/10.1039/C1CS15171A
Jörres, M., Aceña, J.L., Soloshonok, V.A., Bolm, C., 2015. Asymmetric carbon-carbon bond formation under solventless conditions in ball mills. ChemCatChem 7, 1265–1269. https://doi.org/https://doi.org/10.1002/cctc.201500102
Kajdas, C., 2013. General Approach to Mechanochemistry and Its Relation to Tribochemistry, in: Tribology in Engineering. InTechOpen: London, UK, pp. 209–240. https://doi.org/http://dx.doi.org/10.5772/50507
Kaupp, G., 2003. Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism. CrystEngComm 5, 117–133. https://doi.org/https://doi.org/10.1039/B303432A
Kohlschütter, V., Haenni, P., 1918. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Zeitschrift für Anorg. und Allg. Chemie 105, 121–144. https://doi.org/https://doi.org/10.1002/zaac.19191050109
Lopez-Mejías, V., Knight, J.L., Brooks, C.L., Matzger, A.J., 2011. On the mechanism of crystalline polymorph selection by polymer heteronuclei. Langmuir 27, 7575–7579. https://doi.org/https://doi.org/10.1021/la200689a
Margaret E. Etter, 1991. Hydrogen Bonds as Design Elements in Organic Chemistry. J. Phys. Chem. 95, 4601–4610. https://doi.org/https://doi.org/10.1021/j100165a007
Martini, A., Eder, S.J., Dörr, N., 2020. Tribochemistry: A Review of Reactive Molecular Dynamics Simulations. Lubricants 8, 44. https://doi.org/https://doi.org/10.3390/lubricants8040044
McClelland, A.A., López-Mejías, V., Matzger, A.J., Chen, Z., 2011. Peering at a buried polymer-crystal interface: Probing heterogeneous nucleation by sum frequency generation vibrational spectroscopy. Langmuir 27, 2162–2165. https://doi.org/https://doi.org/10.1021/la105067x
Mechano-chemical reaction, 2008. . IUPAC Compend. Chem. Terminol. 889, 7141. https://doi.org/doi:10.1351/goldbook.MT07141
Michalchuk, A.A.L., Boldyreva, E. V., Belenguer, A.M., Emmerling, F., Boldyrev, V. V., 2021. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front. Chem. 9, 685789. https://doi.org/https://doi.org/10.3389/fchem.2021.685789
Michalchuk, A.A.L., Hope, K.S., Kennedy, S.R., Blanco, M. V., Boldyreva, E. V., Pulham, C.R., 2018. Ball-free mechanochemistry:: In situ real-time monitoring of pharmaceutical co-crystal formation by resonant acoustic mixing. Chem. Commun. 54, 4033–4036. https://doi.org/https://doi.org/10.1039/C8CC02187B
Mukherjee, A., Rogers, R.D., Myerson, A.S., 2018. Cocrystal formation by ionic liquid-assisted grinding: case study with cocrystals of caffeine. CrystEngComm 20, 3817–3821. https://doi.org/https://doi.org/10.1039/C8CE00859K
Murthy, G.S., Arjunan, P., Venkatesan, K., Ramamurthy, V., 1987. Consequences of lattice relaxability in solid state photodimerizations. Tetrahedron 43, 1225–1240. https://doi.org/https://doi.org/10.1016/S0040-4020(01)90245-5
Pfund, L.Y., Matzger, A.J., 2014. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb. Sci. 16, 309–313. https://doi.org/https://doi.org/10.1021/co500043q
Pokkuluri, P.R., Scheffer, J.R., Trotter, J., Yap, M., 1992. Selective Solid-State Photorearrangement through the Less Stable of Two Possible Biradical Intermediates. J. Org. Chem. 57, 1486–1494. https://doi.org/https://doi.org/10.1021/jo00031a030
Rothenberg, G., Downie, A.P., Raston, C.L., Scott, J.L., 2001. Understanding solid/solid organic reactions. J. Am. Chem. Soc. 123, 8701–8708. https://doi.org/https://doi.org/10.1021/ja0034388
Schmidt, G.M.J., 1971. Photodimerization in the solid state. Pure Appl. Chem. 27, 647–678. https://doi.org/http://dx.doi.org/10.1351/pac197127040647
Sheldon, R.A., 2008. Green and sustainable chemistry: challenges and perspectives. Green Chem. 10, 359–360. https://doi.org/https://doi.org/10.1039/B804163F
Skovsgaard, S., Bond, A.D., 2009. Co-crystallisation of benzoic acid derivatives with N-containing bases in solution and by mechanical grinding: stoichiometric variants, polymorphism and twinning. CrystEngComm 11, 444–453. https://doi.org/https://doi.org/10.1039/B810660F
Solares-Briones, M., Coyote-Dotor, G., Páez-Franco, J.C., Zermeño-Ortega, M.R., de la O Contreras, C.M., Canseco-González, D., Avila-Sorrosa, A., Morales-Morales, D., Germán-Acacio, J.M., 2021. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 13, 790. https://doi.org/https://doi.org/10.3390/pharmaceutics13060790
Stolle, A., Schmidt, R., Jacob, K., 2014. Scale-up of organic reactions in ball mills: Process intensification with regard to energy efficiency and economy of scale. Faraday Discuss. 170, 267–286. https://doi.org/https://doi.org/10.1039/C3FD00144J
Suryanarayana, C., 2001. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184. https://doi.org/https://doi.org/10.1016/S0079-6425(99)00010-9
Suslick, K.S., 2014. Mechanochemistry and sonochemistry: Concluding remarks. Faraday Discuss. 170, 411–422. https://doi.org/DOI https://doi.org/10.1039/C4FD00148F
Takacs, L., 2007. The mechanochemical reduction of AgCl with metals : Revisiting an experiment of M. Faraday. J. Therm. Anal. Calorim. 90, 81–84. https://doi.org/https://doi.org/10.1007/s10973-007-8479-8
Takacs, L., 2004. M. Carey Lea, the first mechanochemist. J. Mater. Sci. 39, 4987–4993. https://doi.org/https://doi.org/10.1023/B:JMSC.0000039175.73904.93
Takacs, L., 2003. M. Carey Lea, the Father of mechanochemistry. Bull. Hist. Chem. 28, 26–34. http://acshist.scs.illinois.edu/bulletin_open_access/v28-1/v28-1%20p26-34.pdf
Tan, D., García, F., 2019. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 48, 2274–2292. https://doi.org/https://doi.org/10.1039/C7CS00813A
Tang, S.L.Y., Smith, R.L., Poliakoff, M., 2005. Principles of green chemistry: PRODUCTIVELY. Green Chem. 7, 761–762. https://doi.org/https://doi.org/10.1039/B513020B
Toda, F., Yagi, M., Kiyoshige, K., 1988. Baeyer-Villiger reaction in the solid state. J. Chem. Soc. Chem. Commun. 958–959. https://doi.org/https://doi.org/10.1039/C39880000958
Trask, A. V., Motherwell, W.D.S., Jones, W., Samuel, W.D., Jones, W., 2004. Solvent-Drop Grinding: Green Polymorph Control of Cocrystallisation. Chem. Commun. 890–891. https://doi.org/https://doi.org/10.1039/B400978A
Trask, A. V., Shan, N., Motherwell, W.D.S., Jones, W., Feng, S., Tan, R.B.H., Carpenter, K.J., 2005. Selective polymorph transformation via solvent-drop grinding. Chem. Commun. 880–882. https://doi.org/https://doi.org/10.1039/B416980H
Urakaev, F. Kh., Boldyrev, V. V., 2000. Mechanism and kinetics of mechanochemical processes in comminuting devices 1. Theory. Powder Technol. 107, 93–107. https://doi.org/https://doi.org/10.1016/S0032-5910(99)00175-8
Urakaev, F. Kh, Boldyrev, V. V., 2000. Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Experiment. Powder Technol. 107, 197–206. https://doi.org/https://doi.org/10.1016/S0032-5910(99)00200-4
Publicado
Cómo citar
-
Resumen587
-
PDF508
-
HTML12