Enzimas y organismos importantes dentro del proceso de compostaje
Important enzymes and organisms inside compost process
DOI:
https://doi.org/10.54167/tch.v11i3.94Palabras clave:
composta, enzima, microorganismos, biotransformación y residuosResumen
Uno de los problemas que preocupa al hombre es el aprovechamiento, manejo y destino de los residuos orgánicos provenientes del quehacer diario. Muchos nutrientes esenciales que están en la materia orgánica (carbono, nitrógeno y fósforo) presentes en la naturaleza, experimentan transformaciones por medio de microorganismos y las enzimas que poseen les permiten mejorar la biodisponibilidad de sus nutrientes. Es importante conocer a profundidad procesos de biotransformación enzimática, lo cual permitiría darle un manejo y aprovechamiento a los residuos orgánicos. Existen diversos tipos de enzimas que permiten conocer su actividad en el proceso de compostaje. El objetivo de esta revisión fue presentar los principales componentes de los residuos lignocelulósicos y las enzimas que participan en su degradación para poder conocer la actividad metabólica que se lleva a cabo durante el compostaje.
Descargas
Citas
Ahmeda, I., M.A. Zia, M.A. Hussaina., Z. Akram, M.T. Naveed & A. Nowrouzi. 2016. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. Journal of Radiation Research and Applied Sciences 9 (2):148-154. https://doi.org/10.1016/j.jrras.2015.11.003
Baldrian, P. & V. Valášková. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews 32(3):501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
Béguin P. & J.P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiology Reviews 13(1): 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
Beltrán, M. E. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria 15(1):101-113. https://revistacta.agrosavia.co/index.php/revista/article/view/401
Bhamare, H. M. & R. Z. Sayyed. 2016. Microbial Laccase: Production and their Potential Applications. In Advances in Bio-Medico Sciences and Health Education. (pp. 173-190). Excel India Publishers New Delhi.
Brijwani, K., A. Rigdon & P.V. Vadlani. 2010. Fungal Laccases: Production, Function, and Applications in Food Processing. Enzyme Research. https://doi.org/10.4061/2010/149748
Castillo, D. 2008. Aislamiento de hongos degradadores de colorantes empleados en la industria textil. (Tesis, Instituto Politécnico Nacional). http://tesis.ipn.mx/handle/123456789/1109
Cerón, L.E. & L.M. Melgarejo. 2005. Enzimas del suelo: Indicadores de salud y calidad. Acta Biológica Colombiana 10(1):5-18.https://www.redalyc.org/articulo.oa?id=319028576001
Cooper, B.L. 2013. Enzimas xilanolíticas bacterianas y sus aplicaciones industriales. Revista Vertientes 16(1): 19-22. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=49014
Cunha, A.G. & A. Gandini. 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose 17(5):875-889. https://doi.org/10.1007/s10570-010-9434-6
Dalurzo, H., D. Toledo & S. Vázquez. 2000. Efecto del uso del suelo sobre la actividad de la fosfatasa ácida en Ultisoles del sur de Misiones. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Comunicaciones Científicas y Tecnológicas, Argentina.
EL Sabagha, A., A. Omar, H. Saneoka & M. Sohidul. 2016. Roles of compost fertilizer on nitrogen fixation in soybean (Glycine max L.) under water deficit conditions. Agricultural Advances 5(7):340-344. https://sjournals.com/index.php/aa/article/view/124
Evans, C.S. & J.N. Hedger. 2001. Degradation of plant cell wall polymers. In Fungi in bioremediation (p. 1-20). British Mycological Society. Cambridge Univ. Press. ISBN 9780511541780 https://doi.org/10.1017/CBO9780511541780.002
Fernández, L.A., M.A., Sagardoy & M.A. Gómez. 2008. Estudio de la fosfatasa ácida y alcalina en suelos de la región Pampeana norte del área sojera argentina. Ciencia Suelo 26(1):35-40. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672008000100004
Forsberg, C.W. & D. Groleau. 1982. Stability of the endo-β-1,4-glucanase and β-1,4-glucosidase from Bacteroides succinogenes. Canadian Journal of Microbiology 28:144-148. https://doi.org/10.1139/m82-017
Kibblewhite, M. G., K. Ritz & M. J. Swift. 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society Series B 363:685-701. https://doi.org/10.1098/rstb.2007.2178
Goedegebuur, F., T. Fowler, J. Phillips, P. Van der Kley, P. Van Solingen, L. Dankmeyer & S. Power. 2002. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Current Genetics 41:89-98. https://doi.org/10.1007/s00294-002-0290-2
Hayes, M. & S. Swift. 2017. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances. Journal of Soils and Sediments. 18:1-20. https://doi.org/10.1007/s11368-016-1636-6
Himmel, M.E., S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady & T.D. Foust. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-807. https://doi.org/10.1126/science.1137016
Horn, S. J., G. Vaaje-Kolstad, B. Westereng & V. G. H. Eijsink. 2012. Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 5(45). http://doi.org/10.1186/1754-6834-5-45.
Ijoma, G.N. & M. Tekere. 2017. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. International Journal of Environmental Science and Technology 14:1787:1806. https://doi.org/10.1007/s13762-017-1269-3
Julca, A., Meneses, L. & Blas, R. 2006. La materia orgánica, importancia y experiencias de su uso en la agricultura. IDESIA 24(1):49-61. https://www.scielo.cl/scielo.php?pid=S0718-34292006000100009&script=sci_abstract
Kadokawa, J. 2011. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews 111: 4308-4345. https://doi.org/10.1021/cr100285v
Keeling, P.L. & A.M. Myers. 2010. Biochemistry and Genetics of Starch Synthesis. Annual Review of Food Science and Technology 1:271-303. https://doi.org/10.1146/annurev.food.102308.124214
Kersten, P. & D. Cullen. 2006. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology 44(2):77-87. https://doi.org/10.1016/j.fgb.2006.07.007
Kopeć, M., K. Gondek, M. Mierzwa-Hersztek & T. Zaleski. 2016. Effect of the composting process on physical and energetic changes in compost. Acta Agrophysica 23(4):607-619. https://tinyurl.com/yckvezyd
Kumar, R., S. Singh & O.V. Singh. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal Industrial Microbiology Biotechnology 35(5):377-391. https://doi.org/10.1007/s10295-008-0327-8
Laurichesse, S. & L. Avérous. 2014. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science 39(7):1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004
Li, X., H. Yang, B. Roy, D. Wang, W. Yue, L. Jiang, E.Y. Park & Y. Miao. 2009. The most stirring technology in future: Cellulase enzyme and biomass utilization. African Journal of Biotechnology 8(11): 2418-2422. https://www.ajol.info/index.php/ajb/article/view/60614
Lynd L.R., P. J. Weimer, W. H. van Zyl & I. S. Pretorius. 2002. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and molecular biology reviews 66(3):506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
Madadi, M. & A. Abbas. 2017. Lignin degradation by fungal pretreatment: A Review. Journal of Plant Pathology and Microbiology 8(2): 398. https://www.walshmedicalmedia.com/abstract/lignin-degradation-by-fungal-pretreatment-a-review-15649.html
Martin, D., S.G. Wettstein, M.A. Mellmer, E.I. Gurbuzab & J.A. Dumesic. 2013. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy & Environmental Science 6:76-80. https://pubs.rsc.org/en/content/articlelanding/2013/ee/c2ee23617f
Meléndez, G. 2003. Residuos orgánicos y la materia orgánica del suelo. En Taller de abonos orgánicos (p. 5-30). Centro de Investigaciones Agronómicas de la Universidad de Costa Rica. https://repositorio.catie.ac.cr/handle/11554/3060
Meneses, D.C. 2011. Caracterización y selección de microorganismos asociados a residuos ligninocelulósicos de la higuera (Ricinus communis). (Tesis. Universidad Católica De Manizales). https://repositorio.ucm.edu.co/handle/10839/298
Mondini, C., F. Fornasier & T. Sinicco. 2004. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biology & Biochemistry 36(10):1587-1594. https://doi.org/10.1016/j.soilbio.2004.07.008
Noinville, S., M. Revautl, H. Quiquampoix & M.H. Baron. 2004. Structural effects of drying and rehydration for enzymes in soils: kinetics-FTIR analysis of chymotrypsin adsorbed on montmorillonite. Journal of Colloid and Interface Science 273(2): 414-425. https://doi.org/10.1016/j.jcis.2004.01.067
Olimpia, P., V. Ventorino & G. Blaiotta. 2013. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Management 33(7):1616-1625. https://doi.org/10.1016/j.wasman.2013.03.025
Onthong, J., S. Gimsanguan, A. Pengnoo, C. Nilnond & M. Osaki. 2007. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. Isolated from acid sulphate soil. Songklanakarin Journal of Science and Technology 29(2):275-286.
Payne, C. M., B.C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel, M. Sandgren, J. Ståhlberg & G.T. Beckham. 2015. Fungal Cellulases. Chemical Reviews 115(3):1308-1448. https://doi.org/10.1021/cr500351c
Pinto, P.A., A. A. Dias, I. Fraga, G. Marques, M.A.M. Rodrigues, J. Colaço, A. Sampaio & R. M. F. Bezerra. 2012. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresource Technology 111:261-267. https://doi.org/10.1016/j.biortech.2012.02.068
Pothiraj, C., P. Kanmani & P. Balaji. 2006. Bioconversion of Lignocellulose Materials. Mycobiology 34(4): 159-165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769567/
Ruiz‐Dueñas, F. J. & A. T. Martínez. 2009. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology 2(2):164-177. https://doi.org/10.1111/j.1751-7915.2008.00078.x
Saha, B. C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30:279-29. https://doi.org/10.1007/s10295-003-0049-x
Sara, B., K.C. Noreddine & J. Destain. 2016. Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the East of Algeria. African Journal of Biotechnology 15(7):207-213. https://doi.org/10.5897/AJB2015.15001
Soriano, L. M. 2004. Análisis de sistemas pectinolíticos bacterianos. Aislamiento y caracterización de las pectinasas PEIA de Paenibacillus sp. BP23 y YvpA de Bacilllus subtilis. (Tésis doctoral, Universitat de Barcelona). https://www.tdx.cat/bitstream/handle/10803/2391/TESIS_M_SORIANO.pdf?sequence=1&isAllowed=y
Tortarolo, M.F., M. Pereda, M. Palma & N.M. Arrigo. 2008. Influencia de la inoculación de microorganismos sobre la temperatura en el proceso de compostaje. Ciencia del Suelo 26(1):41-50. https://tinyurl.com/3neecdvn
Vargas-García, M.C., F. Suárez-Estrella, M. J. López & J. Moreno. 2007. In vitro Studies on lignocellulose degradation by microbial strains isolated from composting processes. International Biodeterioration & Biodegradation 59(4):322-328. https://doi.org/10.1016/j.ibiod.2006.09.008
Wilson D. B. 2011. Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology 14(3):259-263. https://doi.org/10.1016/j.mib.2011.04.004
Publicado
Cómo citar
-
Resumen1146
-
PDF533
-
HTML13