Comparación de métodos de extracción de proteínas de cerebro y linfocitos de rata
Comparison of protein extraction methods from brain and lymphocytes of rat
DOI:
https://doi.org/10.54167/tch.v11i3.87Palabras clave:
proteómica, electroforesis bidimensional (2-DE), extracción de proteínas, cerebro, linfocitosResumen
En este trabajo se compararon tres técnicas de extracción de proteínas actualmente empleadas en proteómica, para determinar la más eficiente para realizar electroforesis bidimensional (2-DE) en tejido cerebral y linfocitos de sangre periférica de rata. Los métodos utilizados fueron el uso directo de solución de lisis, el método TCA/acetona-DTT y el método TCA/acetona-fenol. Una vez que se realizó la extracción, se separaron las proteínas por medio de electroforesis en geles de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE) y 2-DE, con el objetivo de seleccionar cuál de ellos brindó un mayor rendimiento en la cantidad de proteínas totales, así como en el número de bandas bien definidas y manchas bien enfocadas en los geles 2-DE, tanto para cerebro como para linfocitos. Al comparar el perfil proteico, en cerebro se detectaron 13 ± 0; 15 ± 1 y 12 ± 1 bandas bien definidas mediante los métodos de TCA/ acetona-DTT, TCA/acetona-fenol y solución de lisis, respectivamente. En linfocitos, se encontraron 19 ± 1.20 ± 0 y 19 ± 1 bandas, respectivamente. Con respecto al proteoma, tanto en cerebro como en linfocitos se encontró mayor número de manchas proteicas consistentes y bien enfocadas con el método de TCA/acetona-DTT. Estos resultados mostraron que el mejor método de extracción de proteínas para su uso en la 2-DE correspondió al de TCA/acetona-DTT, siendo además más rápido y sencillo de realizar que el método de TCA/acetona-fenol.
Descargas
Citas
Alam, M. & W. Ghosh. 2014. Optimization of a phenol extraction-based protein preparation method amenable to downstream 2DE and MALDI-MS based analysis of bacterial proteomes. Proteomics 14(2-3): 216-221. https://doi.org/10.1002/pmic.201300146
Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analylical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cilia, M., T. Fish, X. Yang, M. Mclaughlin, T.W. Thannhauser & S. Gray. 2009. A comparison of protein extraction methods suitable for gel-based proteomic studies of aphid proteins. J. Biomol. Tech. 20(4): 201-215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729484/
Deatherage, B.L., D.S. Wunschel, M.A. Sydor, M.G. Warner, K.L. Wahl & J.R. Hutchison. 2015. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. Journal of Microbiological Methods 118:18-24. https://doi.org/10.1016/j.mimet.2015.08.008
Ericsson, C., I. Peredo & M. Nistér. 2007. Optimized protein extraction from cryopreserved brain tissue samples. Acta Oncológica 46(1): 10-20. https://doi.org/10.1080/02841860600847061
Faurobert, M., E. Pelpoir & J. Chaïb. 2007. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. En Plant Proteomics. Methods and Protocols (pp.9-14). Humana Press. ISBN 9781071605271.
Gao, M., N. Li, J. Zhang, P. Yang & X. Zhang. 2006. The study of three extraction methods for pre-separation and enrichment: Application to the complex proteome separation in rat liver. Separation and Purification Technology 52(1):170-176. https://doi.org/10.1016/j.seppur.2006.04.006
Glatter, T., E. Ahrné & A. Schmidt. 2015. Comparison of different sample preparation protocols reveals lysis buffer-specific extraction biases in gram-negative bacteria and human cells. Journal of Proteome Research 14(11): 4472-4485. https://doi.org/10.1021/acs.jproteome.5b00654
González, R., J. Valero & J.V. Jorrín-Novo. 2014. Proteómica en hongos fitopatógenos. En Manual de Proteómica (pp.585-607). Sociedad Española de Proteómica. https://tinyurl.com/4ff9t93v
Görg, A., W. Postel, S. Gunther & C. Friedrich. 1988. Horizontal two-dimensional electrophoresis with immobilized pH gradients using PhastSystem. Electrophoresis 9(1): 57-59. https://doi.org/10.1002/elps.1150090111
Hao, R., C. Adoligbe, B. Jiang, X. Zhao, L. Gui, K. Qu, S. Wu & L. Zan. 2015. An optimized trichloroacetic acid/acetone precipitation method for two-dimensional gel electrophoresis analysis of qinchuan cattle longissimus dorsi muscle containing high proportion of marbling. PLoS ONE 10(4): 1-12. https://doi.org/10.1371/journal.pone.0124723
Haudenschild, D.R., A. Eldridge, P. J. Lein & B. A. Chromy. 2014. High abundant protein removal from rodent blood for biomarker discovery. Biochemical and Biophysical Research Communications 455(1-2): 84-89. https://doi.org/10.1016/j.bbrc.2014.09.137
Herosimczyk, A., N. Dejeans, T. Sayd, M. Ozgo, W.E. Skrzypczak & A. Mazur. 2006. Plasma proteome analysis: 2D gels and chips. Journal of Physiology and Pharmacology 57(7):81-97. https://tinyurl.com/yc8nfckw
Jankowska, U., A. Latosinska, B. Skupien-Rabian, B. Swiderska, M. Dziedzicka-Wasylewska & S. Kedracka-Krok. 2016. Optimized procedure of extraction, purification and proteomic analysis of nuclear proteins from mouse brain. Journal of Neuroscience Methods 261(1):1-9. https://doi.org/10.1016/j.jneumeth.2015.12.002
Kim, M. & C. Kim. 2007. Human blood plasma preparation for two-dimensional gel electrophoresis. Journal of Chromatography 849(1-2): 203-210. https://doi.org/10.1016/j.jchromb.2006.11.046
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680-5.
Liley, K.S., A. Razzaq & P. Dupree. 2002. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology 6(1): 46-50. https://doi.org/10.1016/S1367-5931(01)00275-7
Luche, S., V. Santoni & T. Rabilloud. 2003. Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3(3): 249-253. https://doi.org/10.1002/pmic.200390037
Malafaia, C.B., M. L. Guerra, T. D. Silva, P. M.G. Paiva, E. B. Souza, M. T. S. Correia & M. V. Silva. 2015. Selection of a protein solubilization method suitable for phytopathogenic bacteria: a proteomics approach. Proteome Science 13(5). https://proteomesci.biomedcentral.com/articles/10.1186/s12953-015-0062-9
Maldonado, A., S. Echeverría-Zomeño, S. Jean-Baptiste, M. Hernández & J.V. Jorrín-Novo. 2008. Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J. Proteomics 71(4): 461-472. https://doi.org/10.1016/j.jprot.2008.06.012
Moore, S.M., S.M. Hess & J.W. Jorgenson. 2016. Extraction, enrichment, solubilization, and digestion techniques for membrane proteomics. Journal of Proteome Research 15(4):1243-1252. https://doi.org/10.1021/acs.jproteome.5b01122
Northrop, R.B. & A.N. Connor. 2009. Introduction to molecular biology, genomics and proteomics for biomedical engineers. CRC Press. ISBN 9780429148767. https://doi.org/10.1201/b15770
Pooladi, M., S.K.R. Abad & M. Hashemi. 2014. Proteomics analysis of human brain glial cell proteome by 2D gel. Indian Journal of Cancer 51(2): 159-162. https://www.indianjcancer.com/text.asp?2014/51/2/159/138271
Rabilloud, T., M. Chevallet, S. Luche & C. Lelong. 2010. Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of Proteomics. 73(11): 2064-77. https://doi.org/10.1016/j.jprot.2010.05.016
Rabilloud, T. & C. Lelong. 2011. Two-dimensional gel electrophoresis in proteomics: A tutorial. Journal of Proteomics 74(10): 1829-1841. https://doi.org/10.1016/j.jprot.2011.05.040
Sheoran, I.S., A.R.S. Ross, D.J.H. Olson & V. K. Sawhney. 2009. Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Science 176(1): 99-104. https://doi.org/10.1016/j.plantsci.2008.09.015
Shevchenko, G., S. Musunuri, M. Wetterhall & J. Bergquist. 2012. Comparison of extraction methods for the comprehensive analysis of mouse brain proteome using shotgun-based mass spectrometry. Journal of Proteome Research 11(4): 2441-2451. https://doi.org/10.1021/pr201169q
Tenório-Daussat, C.L., M.C. Martinho, R.L. Ziolli, R.A. Hauser-Davis, D. Schaumloffel & T. Saint’Pierre. 2014. Evaluation and standardization of different purification procedures for fish bile and liver metallothionein quantification by spectrophotometry and SDS-PAGE analyses. Talanta 120: 491-497. https://doi.org/10.1016/j.talanta.2013.11.070
Tiong, H., S. Hartson & P.M. Muriana. 2015. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. Journal of Microbiological Methods 110: 54-60. https://doi.org/10.1016/j.mimet.2015.01.004
Vargas-Caraveo, A., H. Castillo-Michel, G.E. Mejía-Carmona, D.G. Pérez-Ishiwara, M. Cotteb & A. Martínez-Martínez. 2014. Preliminary studies of the effect of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128(15): 141-146. https://doi.org/10.1016/j.saa.2014.02.148
Wang, W., R. Vignani, M. Scali & M. Cresti. 2006. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27(13): 2782-2786. https://doi.org/10.1002/elps.200500722
Zheng, Q., J. Song, K. Doncaster, E. Rowland & D. Byers. 2007. Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. J. Agricultural and Food Chemistry 55(5): 1663-1673. https://doi.org/10.1021/jf062850p
Publicado
Cómo citar
-
Resumen1398
-
PDF204
-
HTML15