Reacciones de trifluorometilación catalizadas por metales de transición
Transition Metal Catalyzed Trifluoromethylation Reactions
DOI:
https://doi.org/10.54167/tecnociencia.v16i1.838Palabras clave:
trifluorometilación, metales de transición, catalizadorResumen
Las reacciones de trifluorometilación tienen gran importancia en la industria farmacéutica por las propiedades que confieren a los compuestos que presentan tal grupo funcional. Este tipo de reacciones están presentes en la elaboración de sintones o unidades estructurales claves para la producción de Aprepitant, Fluoxetina, Leflunomida y Dutasterida, teniendo gran impacto en la industria farmacéutica. Se resumen los diferentes reactivos empleados en la trifluorometilación remarcando la relevancia que tienen las reacciones catalizadas por metales de transición en la obtención de procesos más baratos y limpios.
Descargas
Citas
Bazyar, Z. & Hosseini-Sarvari, M. (2019). Au@ZnO Core-shell: Scalable photocatalytic trifluoromethylation using CF3COONa as an inexpensive reagent under visible light irradiation. Organic Process Research & Development, 23, 2345-2353. https://doi.org/10.1021/acs.oprd.9b00225
Chang, Y. & Cai, C. (2005). Trifluoromethylation of carbonyl compounds with sodium trifluoroacetate. Journal of Fluorine Chemistry, 126, 937-940. https://doi.org/10.1016/j.jfluchem.2005.04.012
Cotté, A., Gotta, M., Beller, M., Schareina, T., Zapf, A., Wu, X-F. (2013). Copper-catalysed process for the production of substituted or unsubstituted trifluormethylated aryl and heteroaryl compounds. US Patent. No. 8,530,666 B2. https://patents.google.com/patent/US8530666B2/en
Dubinina, G., Furutachi, H., & Vicic, D.A. (2008). Active trifluoromethylating agents from well-defined Copper(I)-CF3 complexes. Journal of the American Chemical Society, 130, 8600-8601. https://doi.org/10.1021/ja802946s
Hu, W.-Q., Pan, S., Xu, X.-H., Vicic, D.A., & Qing, F.-L. (2020). Nickel-mediated trifluoromethylation of phenol derivatives by aryl C-O bond activation. Angewandte Chemie, 59,37, 16076-16082. https://doi.org/10.1002/anie.202004116
Johansen, M.B. & Linhardt, A.T. (2020). Copper-catalyzed and additive free decarboxylative trifluoromethylation of aromatic and heteroaromatic iodides. Organic & Biomolecular Chemistry 18, 1415-1225. https://doi.org/10.1039/C9OB02635E
Kiyohide, M., Etsuko, T., Midori, A., Kiyosi, K. (1981). A convenient trifluoromethylation of aromatic halides with sodium trifluoroacetate. Chemistry Letters, 10, 1719-1720. https://doi.org/10.1246/cl.1981.1719
McLoughlin, V.C.R. & Thrower, J. (1968). Manufacture of organic compounds containing fluorine. US Patent No. 3,408,411A. https://patents.google.com/patent/US3408411A/en
Lecturas complementarias
Alonso, C., Martínez de Marigorta, E., Rubiales, G. & Palacios, F. (2015). Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chemical Reviews, 115, 1847−1935. https://doi.org/10.1021/cr500368h
Ashton, T.D., Devine, S.M., Mòhrle, J.J., Laleu, B., Burrows, J.N., Charman, S.A., Creek, D.J. & Sleebs, B.E. (2019). The development process for discovery and clinical advancement of modern antimalarials. Journal of Medicinal Chemistry, 62, 10526–10562. https://doi.org/10.1021/acs.jmedchem.9b00761
Ball, N.D., Kampf, J.W. & Sanford, M.S. (2010). Aryl-CF3 Bond-forming reductive elimination from palladium (IV). Journal of the American Chemical Society, 132, 2878-2879. https://doi.org/10.1021/ja100955x
McReynolds, K.A., Lewis, R.S., Ackerman, L.K.G., Dubinina, G.G., Brennessel, W.W. & Vicic, D.A. (2010). Decarboxylative trifluoromethylation of aryl halides using well-defined copper–trifluoroacetate and –chlorodifluoroacetate precursors. Journal of Fluorine Chemistry, 131, 1108–1112. https://doi.org/10.1016/j.jfluchem.2010.04.005
Nakamura, Y., Fujio, M., Murase, T., Itoh, Y., Serizawa, H., Aikawa, K. & Mikami, K. (2013). Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide. Beilstein Journal of Organic Chemistry 9, 2404-2409. https://doi.org/10.3762/bjoc.9.277
Schiesser, S., Chepliaca, H., Kollback, J., Quennesson, T., Czechtizky, W. & Cox, R.J. (2020). N-trifluoromethyl amines and azoles: An underexplored functional group in the Medicinal Chemist’s Toolbox. Journal of Medicinal Chemistry, 63, 13076–13089. https://doi.org/10.1021/acs.jmedchem.0c01457
Tomashenko, O.A. & Grushin, V.V. (2011). Aromatic trifluoromethylation with metal complexes. Chemical Reviews, 111, 4475–4521. https://doi.org/10.1021/cr1004293
Wang, J., Sánchez-Rosello, M., Aceña, J.L., del Pozo, C., Sorochinsky, A.E., Fustero, S., Soloshonok, V.A., & Liu, H. (2014). Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chemical Reviews 114, 2432-2506. https://doi.org/10.1021/cr4002879
Wenthur, C.J., Bennett, M.R., & Lindsley, C.W. (2014). Classics in chemical neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience 5(1), 14-23. https://doi.org/10.1021/cn400186j
Zhang, C. (2014). Recent advances in trifluoromethylation of organic compounds using Umemoto`s reagents. Organic & Biomolecular Chemistry 12, 6580-6589. https://doi.org/10.1039/C4OB00671B
Publicado
Cómo citar
-
Resumen416
-
PDF159
-
HTML28