Efecto de un extracto de ajo negro combinado con ácido ascórbico sobre el color y la oxidación lipídica de hamburguesas

Autores/as

DOI:

https://doi.org/10.54167/tch.v18i4.1683

Palabras clave:

antioxidante natural, hamburguesa, calidad de carne, ajo negro, vida útil

Resumen

La oxidación de los productos cárnicos limita su calidad y vida útil y se evita mediante aditivos antioxidantes. Como alternativa a estos aditivos, se propone el uso de ingredientes naturales ricos en antioxidantes. En este estudio, se evaluó el efecto antioxidante de un extracto acuoso de ajo negro, como ingrediente natural rico en polifenoles, en hamburguesas de cerdo. Se utilizaron 20 ml de extracto, obtenido de un homogeneizado preparado con una parte de ajo y tres de agua, por kg de hamburguesa en combinación con tres diferentes niveles de ácido ascórbico (entre 0,125 a 0,5 g/kg). Se comprobó el efecto de las distintas combinaciones para prevenir la decoloración en las hamburguesas crudas y la estabilidad de la oxidación lipídica en las hamburguesas cocinadas durante el almacenamiento aeróbico refrigerado. El uso de extracto de ajo negro oscureció las hamburguesas y aumentó los índices de rojo y amarillo. El ácido ascórbico potenció el efecto antioxidante del ajo negro en las hamburguesas cocidas y viceversa. El extracto de ajo negro combinado con ácido ascórbico, incluso en una cantidad cuatro veces inferior a la utilizada habitualmente en la industria cárnica, fue el tratamiento con mayor efecto antioxidante.

DOI: https://doi.org/10.54167/tch.v18i4.1683

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Augustyńska-Prejsnar, A., Kačániová, M., Ormian, M., Topczewska, J., Sokołowicz, Z., & Hanus, P. (2024). Quality Assessment of Minced Poultry Products Including Black Fermented Garlic. Foods, 13(1), 70. https://doi.org/10.3390/foods13010070

AMSA. (2012). http://www.meatscience.org

Barido, F. H., Jang, A., Pak, J. I., Kim, Y. J., & Sung, S. K. (2022). Combined effects of processing method and black garlic extract on quality characteristics, antioxidative, and fatty acid profile of chicken breast. Poultry Science, 101(4): 101723. https://doi.org/10.1016/j.psj.2022.101723.

Bellucci, E. R. B., Bis-Souza, C. V., Domínguez, R., Bermúdez, R., & Barretto, A. C. d. S. (2022). Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules, 12(10): 1506. https://doi.org/10.3390/biom12101506

Bruun-Jensen, L., Skovgaard, Ib M., Madsen, E. A., Skibsted, L. H., & Bertelsen, G. (1996). The combined effect of tocopherols, L-ascorbyl palmitate and L-ascorbic acid on the development of warmed-over flavour in cooked, minced turkey. Food Chemistry, 55(1): 41-47. https://doi.org/10.1016/0308-8146(95)00070-4

Callejas-Cárdenas, A. R., Caro, I., Blanco, C., Villalobos-Delgado, L. H., Prieto, N., Bodas, R., Giráldez, F. J., & Mateo, J. (2014). Effect of vacuum ageing on quality changes of lamb steaks from early fattening lambs during aerobic display. Meat Science, 98(4): 646-651. https://doi.org/10.1016/j.meatsci.2014.06.036

Cirkovic Velickovic, T. D., & Stanic-Vucinic, D. J. (2018). The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Comprehensive Reviews in Food Science and Food Safety, 17(1): 82-103. https://doi.org/10.1111/1541-4337.12320

Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4): 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

Choi, I. S., Cha, H. S., & Lee, Y. S. (2014). Physicochemical and Antioxidant Properties of Black Garlic. Molecules, 19(10): 16811-16823. https://doi.org/10.3390/molecules191016811

Dai, F., Chen, W. F., & Zhou, B. (2008). Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie, 90(10): 1499-1505. https://doi.org/10.1016/j.biochi.2008.05.007

Dewi, N. N. A., & Mustika, I. W. (2018). Nutrition content and antioxidant activity of black garlic. International Journal of Health Sciences, 2(1): 11-20. http://dx.doi.org/10.29332/ijhs.v2n1.86

Domínguez, R., Pateiro, M., Agregán, R., & Lorenzo, J. M. (2017). Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. Journal of Food Science and Technology, 54: 26-37. https://doi.org/10.1007/s13197-016-2405-7

Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64: 171-181. https://doi.org/10.1016/j.foodres.2014.06.022

Habinshuti, I., Chen, X., Yu, J., Mukeshimana, O. Duhoranimana, E., Karangwa, E., Muhoza, B., Zhang, M., Xia, S., & Zhang, X. (2019). Antimicrobial, antioxidant and sensory properties of Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT, 101: 694-702. https://doi.org/10.1016/j.lwt.2018.11.083

Hygreeva, D., Pandey, M. C., & Radhakrishna, K. (2014). Potential applications of plant-based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Science, 98(1): 47-57. https://doi.org/10.1016/j.meatsci.2014.04.006

Karre, L., Lopez, K., & Getty, K. J. (2013). Natural antioxidants in meat and poultry products. Meat Science, 94(2) : 220-227. https://doi.org/10.1016/j.meatsci.2013.01.007

Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1): 62-70. https://doi.org/10.1016/j.jfda.2016.11.003

Khlebnikov, A. I., Schepetkin, I. A., Domina, N. G., Kirpotina, L. N., & Quinn, M. T. (2007). Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorganic & Medicinal Chemistry, 15(4): 1749-1770. https://doi.org/10.1016/j.bmc.2006.11.037

Lee, H. J., Yoon, D. K., Lee, N. Y., & Lee, C. H. (2019). Effect of aged and fermented garlic extracts as natural antioxidants on lipid oxidation in pork patties. Food Science of Animal Resources, 39(4): 610-622. https://pmc.ncbi.nlm.nih.gov/articles/PMC6728816/

Min, B. R., Nam, K. C., Cordray, J. C., & Anh, D. U. (2008). Factors affecting oxidative stability of pork, beef, and chicken meat. Iowa State University Animal Industry Report, 5(1). https://doi.org/10.31274/ans_air-180814-1046

Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in meat and meat products. Meat Science, 49(1): S73-S86. https://doi.org/10.1016/S0309-1740(98)90039-0

Musci, M., & Yao, S. (2017). Optimization and validation of Folin–Ciocalteu method for the determination of total polyphenol content of Pu-erh tea. International Journal of Food Science and Nutrition, 68(8): 913–918. https://doi.org/10.1080/09637486.2017.1311844

Nam, K. C., & Ahn, D. U. (2003). Effects of ascorbic acid and antioxidants on the color of irradiated ground beef. Journal of Food Science, 68(5): 1686-1690. https://doi.org/10.1111/j.1365-2621.2003.tb12314.x

Pérez-Palacios, T., & Estévez, M. (2020). Analysis of lipids and lipid oxidation products. In Biswas, A. K., & Mandal, P. K. (Eds.) Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. (pp. 217-239). Academic Press. https://doi.org/10.1016/B978-0-12-819233-7.00013-6

Santos, L. C. R., Santos, E. N. F., Oliveira, C. C., Nascentes, G. A. N., Saldaña, E., Bastos, L. M., Martins, M. M., Campagnol, P.C.B., Cunha, L. C. S., & Jardim, F. B. B. (2024). Black garlic extract: Phytochemical characterisation and application as natural antioxidant in burgers. International Food Research Journal, 31(3). https://doi.org/10.47836/ifrj.31.3.14

Sampels, S. (2013). Oxidation and antioxidants in fish and meat from farm to fork. In Muzzalupo, I (Ed). Food Industry. Intech Open. https://dx.doi.org/10.5772/53169

Sang, S., Cheng, X., Stark, R. E., Rosen, R. T., Yang, C. S., & Ho, C. T. (2002). Chemical studies on antioxidant mechanism of tea catechins: analysis of radical reaction products of catechin and epicatechin with 2,2-Diphenyl-1-picrylhydrazyl. Bioorganic & Medicinal Chemistry, 10(7): 2233-2237. https://doi.org/10.1016/S0968-0896(02)00089-5

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18(Part B): 820-897. https://doi.org/10.1016/j.jff.2015.06.018

Škrovánková, S., Mlček, J., Snopek, L., & Planetová, T. (2018). Polyphenols and antioxidant capacity in different types of garlic. Potravinarstvo Slovak Journal of Food Sciences, 12(1): 267–272. https://doi.org/10.5219/895

Toledano-Medina, M. A., Pérez-Aparicio, J., Moreno-Rojas, R., & Merinas-Amo, T. (2016). Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chemistry, 199: 135-139. https://doi.org/10.1016/j.foodchem.2015.11.128

Yuan, H., Sun, L., Chen, M., & Wang, J. (2016). The comparison of the contents of sugar, amadori, and heyns compounds in fresh and black garlic. Journal of Food Science, 81(7): C1662-C1668. https://doi.org/10.1111/1750-3841.13365

Descargas

Publicado

2024-12-21

Cómo citar

Fernández Fernández-Valladares , N., Caro, I., Mateo, J., & Mariño Almache, M. F. (2024). Efecto de un extracto de ajo negro combinado con ácido ascórbico sobre el color y la oxidación lipídica de hamburguesas . TECNOCIENCIA Chihuahua, 18(4), e1683. https://doi.org/10.54167/tch.v18i4.1683
Metrics
Vistas/Descargas
  • Resumen
    127
  • PDF
    7
  • HTML
    3

Métrica