Recent developments on wall materials for the microencapsulation of probiotics: A review
Desarrollos recientes en materiales de pared para la microencapsulación de probióticos: Una revisión
DOI:
https://doi.org/10.54167/tch.v17i1.1140Palabras clave:
microencapsulación , probióticos, material de pared, Lactobacillus, mucilago, gomaResumen
In recent decades a surge in demand for better and healthier foods has sprung up. One category of products under such increases in demand is probiotic products, both in the form of foodstuffs and dietary supplements. These are living microorganisms that when consumed provide a variety of health benefits to the host, regarding the health of the gastrointestinal tract. The main technological hurdle this presents is to provide them alive in enough quantity. Therefore, microencapsulation methods are often employed to enhance their survivability. A critical point in the design of the encapsulation processes is the adequate selection of an encapsulating agent, which must comply with a series of requirements such as being food grade, being able to envelop the probiotic, and being of low cost to name a few. Thus, this presents an area of opportunity regarding the formulation and exploration of different wall materials. In this paper, some of the developments regarding new wall materials for microencapsulated probiotics are presented and discussed.
Descargas
Citas
Albadran, H. A., A. Monteagudo-Mera, V. V. Khutoryanskiy & D. Charalampopoulos. 2020. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Applied Microbiology and Biotechnology 104: 5749–5757. https://doi.org/10.1007/s00253-020-10632-w
Alpizar-Reyes, E., V. Varela-Guerrero, J. Cruz-Olivares, H. Carrillo-Navas, J. Alvarez-Ramirez, & C. Pérez-Alonso. 2020. Microencapsulation of sesame seed oil by tamarind seed mucilage. International Journal of Biological Macromolecules 145: 207–215. https://doi.org/10.1016/j.ijbiomac.2019.12.162
Alvarado-Reveles, O., S. Fernández-Michel, R. Jiménez-Flores, C. Cueto-Wong, L. Vázquez-Moreno & G. Ramos-Clamont Montfort. 2019. Survival and Goat Milk Acidifying Activity of Lactobacillus rhamnosus GG Encapsulated with Agave Fructans in a Buttermilk Protein Matrix. Probiotics and Antimicrobial Proteins 11: 1340–1347. https://doi.org/10.1007/s12602-018-9475-y
Amiri, M. S., V. Mohammadzadeh, M.E.T. Yazdi, M. Barani, A. Rahdar & G.Z. Kyzas . 2021. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 26(6):1770. https://doi.org/10.3390/molecules26061770
Arepally, D., R. S. Reddy & T. K. Goswami. 2020. Studies on survivability, storage stability of encapsulated spray dried probiotic powder. Current Research in Food Science 3: 235-242. https://doi.org/10.1016/j.crfs.2020.09.001
Ashwar, B. A., A. Gani, A. Gani, M. Ahmad & A. Shah. 2021. Encapsulating probiotics in novel resistant starch wall material for production of rice flour extrudates. LWT 140: 110839. https://doi.org/10.1016/j.lwt.2020.110839
Ashwar, B. A., A. Gani, A. Gani, A. Shah & F. A. Masoodi. 2018. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry 239: 287–294. https://doi.org/10.1016/j.foodchem.2017.06.110
Avila-Reyes, S. V., F. J. Garcia-Suarez, M.T. Jiménez, M. F. San Martín-Gonzalez & L. A. Bello-Perez. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers 102: 423–430. https://doi.org/10.1016/j.carbpol.2013.11.033
Behare, P., S. A. Hussain, D. R. Naranjo, P. Sharma & O. McAuliffe. 2021. Chapter 12 Prebiotic and Probiotic Food Formulations. In Shivani Pathania, Brijesh K. Tiwari (Editors), Food Formulation: Novel Ingredients and Processing Techniques (pp. 237–263). Wiley-Blackwell https://doi.org/10.1002/9781119614760.ch12
Bermudez-Brito, M., J. Plaza-Díaz, S. Muñoz-Quezada, C. Gómez-Llorente & A. Gil. 2012. Probiotic mechanisms of action. Annals of Nutrition and Metabolism 61: 160–174. https://doi.org/10.1159/000342079
Bhagwat, A., P. Bhushette & U. S. Annapure. 2020. Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef University Journal of Basic and Applied Sciences 9:33. https://doi.org/10.1186/s43088-020-00061-z
Bojarczuk, A., S. Skąpska, A. M. Khaneghah & K. Marszałek. 2022. Health benefits of resistant starch: A review of the literature. Journal of Functional Foods 93: 105094. https://doi.org/10.1016/j.jff.2022.105094
Bustamante, M., L. Laurie-Martínez, D. Vergara, R. Campos-Vega, M. Rubilar & C. Shene. 2020. Effect of three polysaccharides (inulin, and mucilage from chia and flax seeds) on the survival of probiotic bacteria encapsulated by spray drying. Applied Sciences 10(13): 4623. https://doi.org/10.3390/app10134623
Călinoiu, L. F., B. E. Ştefănescu, I. D. Pop, L. Muntean & D. C. Vodnar. 2019. Chitosan coating applications in probiotic microencapsulation. Coatings 9(3): 194. https://doi.org/10.3390/coatings9030194
Ceja-Medina, L. I., L. Medina-Torres, M. González-Ávila, J.C. Martínez-Rodríguez, I. Andrade-González, M. Calderón Santoyo, J.A. Ragazzo-Sánchez & R.I. Ortiz-Basurto. 2021. In vitro synbiotic activity of Lactobacillus plantarum encapsulated with mixtures of Aloe vera mucilage, agave fructans and food additives as wall materials. Revista Mexicana de Ingeniería Química 20(2): 711–723. http://rmiq.org/iqfvp/Numbers/V20/No2/Bio2234.html
Ceja-Medina, L. I., R. I. Ortiz-Basurto, L. Medina-Torres, F. Calderas, M. J. Bernad-Bernad, R. F. González-Laredo, J. A. Ragazzo-Sánchez, M. Calderón-Santoyo, M. González-Ávila, I. Andrade-González & O. Manero. 2020. Microencapsulation of Lactobacillus plantarum by spray drying with mixtures of Aloe vera mucilage and agave fructans as wall materials. Journal of Food Process Engineering, 43(8): e13436. https://doi.org/10.1111/jfpe.13436
Choudhury, N., M. Meghwal & K. Das. 2021. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers 2(4): 426–442. https://doi.org/10.1002/fft2.94
Cortés-Camargo, S., J. Cruz-Olivares, B. E. Barragán-Huerta, O. Dublán-García, A. Román-Guerrero & C. Pérez-Alonso. 2017. Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum–nopal mucilage as new wall materials. Journal of Microencapsulation 34(4), 395–407. https://doi.org/10.1080/02652048.2017.1338772
Crook, N., A. Ferreiro, A. J. Gasparrini, M. W. Pesesky, M. K. Gibson, B. Wang, X. Sun, Z. Condiotte, S. Dobrowolski, D. Peterson & G. Dantas. 2019. Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut. Cell Host and Microbe 25(4): 499–512.e8. https://doi.org/10.1016/j.chom.2019.02.005
Cruz-Rubio, J. M., M. Mueller, R. Loeppert, H. Viernstein & W. Praznik. 2020. The Effect of Cladode drying techniques on the prebiotic potential and molecular characteristics of the mucilage extracted from Opuntia ficus-indica and Opuntia joconostle. Scientia Pharmaceutica 88(4): 43. https://doi.org/10.3390/scipharm88040043
Dafe, A., H. Etemadi, H. Zarredar & G. Reza-Mahdavinia. 2017. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules 97: 299–307. https://doi.org/10.1016/j.ijbiomac.2017.01.016
Davani-Davari, D., M. Negahdaripour, I. Karimzadeh, M. Seifan, M. Mohkam, S. J. Masoumi, A. Berenjian & Y. Ghasemi. 2019. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. MDPI Foods 8(3): 92. https://doi.org/10.3390/foods8030092
Dhakal, S. P. & J. He. 2020. Microencapsulation of Vitamins in Food Applications to Prevent Losses in Processing and Storage: A Review. Food Research International 137:109326. https://doi.org/10.1016/j.foodres.2020.109326
do Nascimento, R. de P. & M. R. Marostica Junior. 2021. Emerging Prebiotics: Nutritional and Technological Considerations. In A. Gomes da Cruz, C. Senaka Ranadheera, F. Nazzaro, & N. Amir Mortazavian (Editors), Probiotics and Prebiotics in Foods: Challenges, Innovations, and Advances (pp. 13–46). Academic Press. https://doi.org/10.1016/B978-0-12-819662-5.00016-1
FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. http://fanus.com.ar/posgrado/10-09-25/fao%20probiotics.pdf
FAO/WHO. (2006). Probiotics in Food Health and nutritional Properties and guidelines for the Evaluation.
George Kerry, R., J. K Patra, S. Gouda, Y. Park, H. S. Shin & G. Das. 2018. Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis 26(3): 927–939. https://doi.org/10.1016/j.jfda.2018.01.002
González-Ferrero, C., J. M. I rache, B. Marín-Calvo, L. Ortiz-Romero, R. Virto-Resano & C. J. González-Navarro. 2020. Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. Journal of Microencapsulation 37(3): 242–253. https://doi.org/10.1080/02652048.2020.1724203
Guo, P., K. Zhang, X. Ma & P. He. 2020. Clostridium species as probiotics: Potentials and challenges. Journal of Animal Science and Biotechnology 11:24. https://doi.org/10.1186/s40104-019-0402-1
Gut, A. M., T. Vasiljevic, T., Yeager & O. N. Donkor. 2018. Salmonella infection – Prevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology 164(11): 1327–1344. https://doi.org/10.1099/mic.0.000709
Homayouni-Rad, A., A. M. Mortazavian, M. G. Mashkani, N. Hajipour, & H. Pourjafar. 2021. Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high-temperature conditions. Biocatalysis and Agricultural Biotechnology 35: 102075. https://doi.org/10.1016/j.bcab.2021.102075
Hu, M., J. Guo, Y. Yu, L. Cao & Y. Xu. 2017. Research advances of microencapsulation and its prospects in the petroleum industry. Materials, 10(4): 369. https://doi.org/10.3390/ma10040369
Jannasari, N., M. Fathi, S. J. Moshtaghian & A. Abbaspourrad. 2019. Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules 129: 972–979. https://doi.org/10.1016/j.ijbiomac.2019.02.096
Jiang, N., G. Dev Kumar, J. Chen, A. Mishra & K. Mis Solval. 2020. Comparison of concurrent and mixed-flow spray drying on viability, growth kinetics and biofilm formation of Lactobacillus rhamnosus GG microencapsulated with fish gelatin and maltodextrin. LWT 124: 109200. https://doi.org/10.1016/j.lwt.2020.109200
Kandasamy, S. & R. Naveen. 2022. A review on the encapsulation of bioactive components using spray‐drying and freeze‐drying techniques. Journal of Food Process Engineering 45(8): e14059. https://doi.org/10.1111/jfpe.14059
Kim, W., Y Wang & C. Selomulya. 2020. Dairy and plant proteins as natural food emulsifiers. Trends in Food Science and Technology 105: 261-272. https://doi.org/10.1016/j.tifs.2020.09.012
Lai, K., Y. How & L. Pui. 2021. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. Journal of Microencapsulation 38(2):134-148. https://doi.org/10.1080/02652048.2020.1863490
Lai, K. W., Y. H. How & L. P. Pui. 2020. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation 44(12): e14965. https://doi.org/10.1111/jfpp.14965
Lee, Y., Y. R. Ji, S. Lee, M. J. Choi & Y. Cho. 2019. Microencapsulation of probiotic Lactobacillus acidophilus kbl409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. Journal of Microbiology and Biotechnology 29(5): 721–730. https://doi.org/10.4014/jmb.1903.03018
López-Castejón, M. L., C. Bengoechea, J. M. Alguacil & C. Carrera. 2021. Prebiotic food foams stabilized by inulin and β-lactoglobulin. Food Hydrocolloids 119: 106829. https://doi.org/10.1016/j.foodhyd.2021.106829
Macías-Cortes, E., J.A. Gallegos-Infante, N.E. Rocha-Guzmán, M.R. Moreno-Jiménez, L. Medina-Torres, R. F. González-Laredo. 2020. Microencapsulation of phenolic compounds: Technologies and novel polymers Phenolic compounds. Revista Mexicana de Ingeniería Química 19(2): 491–521. https://bit.ly/3oxjyRd
Maftei, N. M. 2019. Probiotic, prebiotic and synbiotic products in human health. In Frontiers and new trends in the science of fermented food and beverages. In R. L. Solís-Oviedo & A. de la Cruz (Editors). Frontiers and new trends in the science of fermented food and beverages. IntechOpen. http://dx.doi.org/10.5772/intechopen.81553
Mehta, N., P. Kumar, A. K. Verma, P. Umaraw, Y. Kumar, O. P. Malav, A. Q. Sazili, R. Domínguez, J. M. Lorenzo. 2022. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Applied Sciences 12(3): 1424. https://doi.org/10.3390/app12031424
Motalebi Moghanjougi, Z., M. Rezazadeh Bari, M. Alizadeh Khaledabad, S. Amiri & H. Almasi. 2021. Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition 9(9): 5103-5111. https://doi.org/10.1002/fsn3.2470
Mudgil, D. & S. Barak. 2020. Mesquite gum (Prosopis gum): Structure, properties & applications - A review. International Journal of Biological Macromolecules 159: 1094–1102. https://doi.org/10.1016/j.ijbiomac.2020.05.153
Obradović, N., M. Volić, V. Nedović, M. Rakin & B. Bugarski. 2022. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering 321: 110948. https://doi.org/10.1016/j.jfoodeng.2022.110948
Paula, D. de A., E. M. Furtado-Martins, N. de Almeida-Costa, P. Martins de Oliveira, E. Basílio de Oliveira & A. Mota-Ramos. 2019. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. International Journal of Biological Macromolecules 133: 722–731. https://doi.org/10.1016/j.ijbiomac.2019.04.110
Pech-Canul, A. D. L. C., D. Ortega, A. García-Triana, N. González-Silva & R. L. Solis-Oviedo. 2020. A brief review of edible coating materials for the microencapsulation of probiotics. Coatings 10(3): 197. https://www.mdpi.com/2079-6412/10/3/197#
Poltronieri, P., G. Battelli & N. P. Mangia. 2017. Metabolism and biochemistry of LAB and dairy-associated species. In Palmiro Poltronieri (Editor) Microbiological Opportunities and Challenges in the Dairy Industry, 97–122. Wiley online library. https://doi.org/10.1002/9781119115007.ch6
Qi, X., Y. Lan, J. B. Ohm, B. Chen & J. Rao. 2021. The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods. Food & Function 12(19): 8907-8919. https://doi.org/10.1039/D1FO01533H
Quezada, M. P., C. Salinas, M. Gotteland & L. Cardemil. 2017. Acemannan and fructans from Aloe vera (Aloe barbadensis Miller) plants as novel prebiotics. Journal of agricultural and food chemistry 65(46): 10029-10039. https://doi.org/10.1021/acs.jafc.7b04100
Rodríguez-Huezo, M. E., A. G. Estrada-Fernández, B. E. García-Almendárez, F. Ludeña-Urquizo, R. G. Campos-Montiel & D. J. Pimentel-González. 2014. Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT - Food Science and Technology 59(2P1): 768–773. https://doi.org/10.1016/j.lwt.2014.07.004
Singh, R. P., S. Prakash, R. Bhatia, M. Negi, J. Singh, M. Bishnoi & K. K. Kondepudi. 2020. Generation of structurally diverse pectin oligosaccharides having prebiotic attributes. Food Hydrocolloids 108: 105988. https://doi.org/10.1016/j.foodhyd.2020.105988
Staniszewski, A. & M. Kordowska-Wiater. 2021. Probiotic and potentially probiotic yeasts—characteristics and food application. Foods 10(6): 1306. https://doi.org/10.3390/foods10061306
Ushiyama, T. & N. Shimizu. 2018. Microencapsulation using spray-drying: The use of fine starch solution for the wall material. Food Science and Technology Research 24(4): 653–659. https://doi.org/10.3136/fstr.24.653
Vanden Braber, N. L., L. I. Díaz Vergara, Y. E. Rossi, C. A. Aminahuel, A. N. Mauri, L. R. Cavaglieri, & M. A. Montenegro. 2020. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT 118: 108844. https://doi.org/10.1016/j.lwt.2019.108844
Vinderola, G., A. Ouwehand, S. Salminen & A. von Wright. (Eds.). 2019. Lactic Acid Bacteria: Microbiological and Functional Aspects. 5th ed. CRC Press. https://doi.org/10.1201/9780429057465
Wang, M. & K. L. Cheong. 2023. Preparation, structural characterisation, and bioactivities of fructans: A review. Molecules 28(4): 1613. https://doi.org/10.3390/molecules28041613
Wang, K., J. Ni, H. Li, X. Tian, M. Tan & W. Su. 2022. Survivability of probiotics encapsulated in kelp nanocellulose/alginate microcapsules on microfluidic device. Food Research International 160: 111723. https://doi.org/10.1016/j.foodres.2022.111723
Yoha, K. S., J. A. Moses & C. Anandharamakrishnan. 2020. Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. Journal of Food Engineering 283: 110033. https://doi.org/10.1016/j.jfoodeng.2020.110033
Yang, M., Z. Liang, L. Wang, M. Qi, Z. Luo & L. Li. 2020. Microencapsulation delivery system in food industry—Challenge and the way forward. Advances in Polymer Technology. Special Issue (Article ID 7531810) https://doi.org/10.1155/2020/7531810
Publicado
Cómo citar
-
Resumen615
-
PDF57
-
HTML48
Número
Sección
Licencia
Derechos de autor 2023 TECNOCIENCIA Chihuahua
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.