Valorization of oil industry wastes: Extraction of phenolic compounds from different sunflower hull fractions (Helianthus annuus L.)
Revalorización de residuo de la industria aceitera: Extracción de compuestos fenólicos de distintas fracciones de cáscara de girasol (Helianthus annuus L.)
DOI:
https://doi.org/10.54167/tch.v16i3.1023Palabras clave:
sunflower hulls, phenolic compounds, particle size, oil, pHResumen
The recovery of antioxidant compounds present in sunflower hulls, a waste byproduct of the oil extraction process, can be of industrial and environmental interest. The objective of the present work was to determine different operating conditions for the extraction of phenolic compounds from hulls oil sunflower seeds, using water at 90 °C and mechanical agitation. To select the experimental conditions, the hulls of a black hull sunflower hybrid (SPS3120) were analyzed, five particle sizes (>0.84, 0.84 to 0.42, 0.42 to 0.25, 0.25 to 0.149, <0.149 mm), three pH values (5, 7 and 9) and samples with and without oil were evaluated. The selected conditions (pH 9, fractions of particle size ≤0.25 mm- approximately 24 % of the hull, with a prior removal of the oil) were also applied to other three black-oil hybrids (SyN3840, SyN3950, DK4065) and two striped sunflower hybrids (CF201, PAN7077), evaluating the total phenol content and total flavonoid content in the fractions of particle size ≤0.25 and >0.25 mm. By processing approximately 23-24 % of the sunflower hull (≤0.25 mm particle-size fraction), it was possible to obtain a minimum of 59 and 62 % of total phenols and total flavonoids of the total hull, respectively, under the selected conditions.
Descargas
Citas
Angiolillo, L., M. A. Del Nobile & A. Conte. 2015. The extraction of bioactive compounds from food residues using microwaves. Current Opinion in Food Science 5:93-98. https://doi.org/10.1016/j.cofs.2015.10.001
Baiano, A. 2014. Recovery of biomolecules from food wastes: a review. Molecules 19(9):14821-14842. https://doi.org/10.3390/molecules190914821
Baiano A., L. Bevilacqua, C. Terracone, F. Contò & M. A. Del Nobile. 2014. Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering 120:135-145. https://doi.org/10.1016/j.jfoodeng.2013.07.010
Balasundram, N., K. Sundram & S. Samman. 2006. Phenolic compounds in plants and agri-industrial by products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99(1):191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
Cancalon, P. 1971. Chemical Composition of sunflower seed hulls. J. Am. Oil Chem. Soc. 48(10):629-932. https://doi.org/10.1007/BF02544577
Carciochi, R. A., L. G. D’Alessandro, P. Vauchel, M. M. Rodríguez, S. M. Nolasco & K. Dimitrov. 2017. Chapter 4: Valorization of Agrifood By-Products by Extracting Valuable Bioactive Compounds Using Green Processes. In Handbook of Food Bioengineering, Volume 4: Ingredients Extraction by Physicochemical Methods in Food. Ed.: Grumezescu, A.M., Holban A.M. Academic Preess, Elsevier, Londres, Reino Unido. (pp: 216-228). https://agris.fao.org/agris-search/search.do?recordID=FR20210208002
Carelli, A. A., L. M. Frizzera, P. R. Forbito & G. H. Crapiste. 2002. Wax Composition of Sunflower Seed Oils. J. Am. Oil Chem. Soc. 79(8):763-768. https://doi.org/10.1007/s11746-002-0556-9
De Figueiredo, A. K., E. Baümler, I. C. Riccobene & S. M. Nolasco. 2011. Moisture-Dependent Engineering Properties of Sunflower Grains with Different Structural Characteristics. Journal of Food Engineering 102(1):58-65. https://doi.org/10.1016/j.jfoodeng.2010.08.003
De Figueiredo, A. K., L. M. Rodríguez, M. Fernandez, I. C. Riccobene & S. M. Nolasco. 2015. Loss of lipid material during the dehulling of oilseeds with different structural characteristics. Journal of Food Science and Technology volume 52:7934-7943. https://doi.org/10.1007/s13197-015-1910-4
De Leonardis, A., V. Macciola & N. Di Domenico. 2005. A first pilot study to produce a food antioxidant from sunflower seed shells (Helianthus annuus L.). Eur. J. Lipid Sci. Tech. 107(4):220-227. https://doi.org/10.1002/ejlt.200401021
Di Rienzo, J. A., F. Casanoves, M. G. Balzarini., L. Gonzalez, M. Tablada & C. W. Robledo. 2014. InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
Guimarães Drummond e Silva, F., B. Miralles, B. Hernández-Ledesma, L. Amigo, A. H. Iglesias, F. G. Reyes & F. M. Netto. 2017. Influence of protein–phenolic complex on the antioxidant capacity of flaxseed (Linum usitatissimum L.) products. J. Agr. Food Chem. 65(4):800-809. https://doi.org/10.1021/acs.jafc.6b04639
Hayat, K., S. Hussain, S. Abbas, U. Farooq, B. Ding, S. Xia, C. Jia, X. Zhang & W. Xia. 2009. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology 70(1):63-70. https://doi.org/10.1016/j.seppur.2009.08.012
Hemery, Y, U. Holopainen, A.-M. Lampi, P. Lehtinen, T. Nurmi, V. Piironen, M. Edelmann & X. Rouau. 2011. Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. Journal of Cereal Science 53(1):9-18. https://doi.org/10.1016/j.jcs.2010.06.014
Hwang, H., S. Kim, K. O. Evans, C. Koga & Y. Lee. 2015. Morphology and networks of sunflower was crystals in soybean oil organogel. Food Structure 5:10-20. https://doi.org/10.1016/j.foostr.2015.04.002
Laguna, O., A. Barakat, H. Alhamada, E. Durand, B. Baré, F. Fine, P. Villeneuve, M. Citeau, S. Dauguet & J. Lecomte. 2018. Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Industrial Crops and Products 118:160-172. https://doi.org/10.1016/j.indcrop.2018.03.045
Lindström, L. I., C. N. Pellegrini & L. F. Hernández. 2000. Anatomy and development of the pericarp in fruits of different sunflower (Helianthus annuus L.) genotypes. In 15th international sunflower conf. procs. (pp. 13-18).
Menzel, C., C. González-Martínez, A. Chiralt & Vilaplana F. 2019. Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers 214:142-151. https://doi.org/10.1016/j.carbpol.2019.03.022
Molina-Quijada, D. M. A., L. A. Medina-Juáre, G. A. González-Aguilar, R. M. Robles-Sánchez & Gámez-Meza N. 2010. Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en el noroeste de México. CyTA- Journal of Food 8(1):57-63. https://doi.org/10.1080/19476330903146021
Nkhili, E., V. Tomao, H. El Hajji, E. El Boustani, F. Chemat & O. Dangles. 2009. Microwave-assisted Water Extraction of Green Tea Polyphenols. Phytochemical Analysis 20(5):408-415. https://doi.org/10.1002/pca.1141
Oroian, M & I. Escriche. 2015. Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International 74:10-36. https://doi.org/10.1016/j.foodres.2015.04.018
Paladino, S. C. 2008. Actividad antioxidante de los compuestos fenólicos contenidos en las semillas de la vid (Vitis vinifera L.). (Tesis de Magister en Alimentos, Universidad Nacional de Cuyo). https://bdigital.uncu.edu.ar/2627
Pedrosa, M. M., M. Muzquiz, C. García-Vallejo, C. Burbano, C. Cuadrado, G. Ayet & L. M. Robredo. 2000. Determination of caffeic and chlorogenic acids and their derivatives in different sunflower seeds. J. Sci. Food Agric. 80(4):459-464. https://doi.org/10.1002/(SICI)1097-0010(200003)80:4%3C459::AID-JSFA549%3E3.0.CO;2-O
Rawel, H. M., K. Meidtner & J. Kroll. 2005. Binding of selected phenolic compounds to proteins. J. Agr. Food Chem. 53(10):4228-4235. https://doi.org/10.1021/jf0480290
Rodríguez, M., D. Fanesi & S. Nolasco. 2017. Obtención de ceras a partir de cáscaras de girasol (Helianthus annuus L.). Aceites y Grasas 109, Tomo XXVII 4, 616-620.
Rodríguez, M., S. Nolasco, N. Izquierdo, R. Mascheroni, M. Sanchez, D. Chávez-Flores & A. Quintero-Ramos. 2019. Microwave extraction of antioxidant compounds in sunflower hull. Heat Mass Transfer 55:3017-3027. https://doi.org/10.1007/s00231-019-02648-4
Szydłowska-Czerniak, A., K. Trokowski & E. Szlyk. 2011. Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment. Industrial Crops and Products 33(1):123-131. https://doi.org/10.1016/j.indcrop.2010.09.016
Taha, F. S., S. M. Wagdy, M. M. M. Hassanein & S. F. Hamed. 2012. Evaluation of the biological activity of sunflower hull extracts. Grasas y aceites 63(2):184-192. https://doi.org/10.3989/gya.072111
Vats, S. 2017. Chapter 1: Methods for Extractions of Value-Added Nutraceuticals From Lignocellulosic Wastes and Their Health Application. In Handbook of Food Bioengineering, Volume 4: Ingredients Extraction by Physicochemical Methods in Food. Ed.: Grumezescu, A.M., Holban A.M. Academic Preess, Elsevier, Londres, Reino Unido. pp: 1-64. ISBN: 9780128115213
Weisz, G. M., D. R. Kammerer & R. Carle. 2009. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chemistry 115(2):758-765. https://doi.org/10.1016/j.foodchem.2008.12.074
Zoumpoulakis, P., V. Sinanoglou, E. Siapi, G. Heropoulos & C. Proestos. 2017. Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. Antioxidants 6(3):46. https://doi.org/10.3390/antiox6030046
Publicado
Cómo citar
-
Resumen510
-
PDF142
-
HTML12