Propiedades nutricionales, funcionales y bioactivas de alimentos a base de sorgo: Avances y oportunidades para su aprovechamiento integral
Nutritional, functional and bioactive properties of sorghum-based foods: Advances and opportunities for its integral exploitation
DOI:
https://doi.org/10.54167/tecnociencia.v16i2.912Palabras clave:
Sorghum, composición, alimentos de sorgo, propiedades funcionalesResumen
En la actualidad existe una demanda creciente por parte del consumidor de alimentos, que además de ser nutritivos y apetecibles, aporten un beneficio adicional a la salud. La evidencia científica de los efectos benéficos que el sorgo (Sorghum), tiene en la salud humana ha ido aumentando, y por lo mismo, la demanda de alimentos a base de este cereal también se ha incrementado, incluso en los mercados alimentarios de países desarrollados. Debido a su composición química, el grano de sorgo es considerado una fuente rica de nutrientes y compuestos bioactivos. Sin embargo, el reacomodo estructural adoptado y las interacciones que establecen dichos compuestos, compromete su biodisponibilidad, digestibilidad, funcionalidad y propiedades sensoriales. No obstante, el sorgo se distingue de otros cereales por su alta tolerancia al calor y resistencia a la sequía, lo que amplía su potencial como cultivo sostenible para la futura seguridad agroalimentaria ante el desafío del cambio climático. En este escenario, parte de la comunidad científica ha orientado su investigación en busca de mejorar los alimentos tradicionales que se derivan del sorgo, así como a la elaboración de alimentos novedosos para impulsar su aprovechamiento a través de la industria alimentaria. En esta revisión se analizan los avances en las mejoras de las propiedades nutricionales, funcionales y bioactivas de alimentos a base de sorgo y se discuten algunas áreas que han sido poco investigadas, las cuales constituyen una oportunidad para el aprovechamiento integral de las propiedades del sorgo en la alimentación humana.
Descargas
Citas
Abah, C., Ishiwu, C., Obiegbuna, J., & Oladejo, A. (2020). Sorghum Grains: Nutritional Composition, Functional Properties and Its Food Applications. European Journal of Nutrition & Food Safety,12, 101-111. https://doi.org/10.9734/ejnfs/2020/v12i530232
Adebo, O. A. (2020). African sorghum-based fermented foods: past, current and future prospects. Nutrients, 12, 1111. https://doi.org/10.3390/nu12041111
Adebolu, T. A., Adediwura, D. V., & Aiyenuro, E. A. (2018). Antibacterial Activity of Sorghum “Ogi” on Diarrhoeagenic Escherichia coli. Journal of Advances in Microbiology, 12, 1-8. https://doi.org/10.9734/JAMB/2018/44011
Ajiboye, T. O., Iliasu, G. A., Adeleye, A. O., Abdussalam, F. A., Akinpelu, S. A., Ogunbode, S. M., & Oloyede, O. B. (2014). Nutritional and antioxidant dispositions of sorghum/millet‐based beverages indigenous to Nigeria.Food science & nutrition, 2, 597-604. https://doi.org/10.1002/fsn3.140
Alavi, S., Ruan, S., Adapa, S. S., Joseph, M., Lindshield, B., & Chilukuri, S. (2019). Use of grain sorghum in extruded products developed for gluten-free and food aid applications.Sorghum: State of the art and future perspectives, 1-16. http://dx.doi.org/10.2134/agronmonogr58.2018.0001
Althwab, S., Carr, T. P., Weller, C. L., Dweikat, I. M., & Schlegel, V. (2015). Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International, 77, 349-359. http://dx.doi.org/10.1016/j.foodres.2015.08.011
Anunciação, P. C., de Morais Cardoso, L., Gomes, J. V. P., Della Lucia, C. M., Carvalho, C. W. P., Galdeano, M. C., ... & Pinheiro-Sant'Ana, H. M. (2017). Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content. Food Chemistry, 221, 984-989. https://doi.org/10.1016/j.foodchem.2016.11.065
Anunciação, P. C., de Morais Cardoso, L., Alfenas, R. D. C. G., Queiroz, V. A. V., Carvalho, C. W. P., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2019). Extruded sorghum consumption associated with a caloric restricted diet reduces body fat in overweight men: A randomized controlled trial. Food Research International, 119, 693-700. https://doi.org/10.1016/j.foodres.2018.10.048
Anunciação, P. C., Cardoso, L. D. M., Queiroz, V. A. V., de Menezes, C. B., de Carvalho, C. W. P., Pinheiro-Sant’Ana, H. M., & Alfenas, R. D. C. G. (2018). Consumption of a drink containing extruded sorghum reduces glycaemic response of the subsequent meal. European journal of nutrition, 57, 251-257. https://doi.org/10.1007/s00394-016-1314-x
Arbex, P. M., de Castro Moreira, M. E., Toledo, R. C. L., de Morais Cardoso, L., Pinheiro-Sant'ana, H. M., dos Anjos Benjamin, L., & Martino, H. S. D. (2018). Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. Journal of functional foods, 42, 346-355. https://doi.org/10.1016/j.jff.2018.01.010
Arouna, N., Gabriele, M., & Pucci, L. (2020). The impact of germination on sorghum nutraceutical properties. Foods, 9, 1218. https://doi.org/10.3390/foods9091218
Awika, J. M. (2017). Sorghum: Its Unique Nutritional and Health-Promoting Attributes. Gluten-Free Ancient Grains, Woodhead Publishing, 21-54. http://dx.doi.org/10.1016/B978-0-08-100866-9.00003-0
Badigannavar, A., Girish, G., Ramachandran, V., & Ganapathi, T. R. (2016). Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. The Crop Journal, 4, 61-67. https://doi.org/10.1016/CJ.2015.07.002
Bakhy, E. A., Zidan, N. S., & Aboul-Anean, H. E. D. (2018). The effect of nano materials on edible coating and films’ improvement. Int J Pharm Res Allied Sci, 7, 20-41. https://bit.ly/3y9GJnz
Balandrán-Quintana, R.R., Mendoza-Wilson, A.M., Ramos-Clamont Montfort G., Huerta-Ocampo, J.A. (2019). Plant-Based Proteins. In: Proteins: Sustainable Source, Processing and Applications. Galanakis, (pp. 97-119). https://doi.org/10.21640/ns.v12i24.2006
Cabrera-Ramírez, A. H., Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Morales-Sánchez, E., Campos-Vega, R., & Gaytán-Martínez, M. (2020). Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International, 134, 109234. https://doi.org/10.1016/j.foodres.2020.109234
Cardone, G., Rumler, R., Speranza, S., Marti, A., & Schönlechner, R. (2021). Sprouting Time Affects Sorghum (Sorghum bicolor [L.] Moench) Functionality and Bread-Baking Performance. Foods, 10, 2285. https://doi.org/10.3390/foods10102285
Carmelo Luna, F. J., Mendoza Wilson, A. M., & Balandrán Quintana, R. R. (2020). Antiradical and chelating ability of (+)-catechin, procyanidin B1, and a procyanidin-rich fraction isolated from brown sorghum bran. Nova scientia, 12, 0-0. https://doi.org/10.21640/ns.v12i24.2006
Castro-Jácome, T. P., Alcántara-Quintana, L. E., & Tovar-Pérez, E. G. (2020). Optimization of sorghum kafirin extraction conditions and identification of potential bioactive peptides. BioResearch Open Access, 9, 198-208. https://doi.org/10.1089/biores.2020.0013
Cayres, C. A., Ascheri, J. L. R., Couto, M. A. P. G., Almeida, E. L., & Melo, L. (2020). Consumers’ acceptance of optimized gluten-free sorghum-based cakes and their drivers of liking and disliking. Journal of Cereal Science, 93, 102938. https://doi.org/10.1016/j.jcs.2020.102938
Chávez, D., Ascheri, J., Martins, A., Carvalho, C., Bernardo, C., & Teles, A. (2018). Sorghum, an alternative cereal for gluten-free product. Rev. chil. nutr., 169-177. https://dx.doi.org/10.4067/s0717-75182018000300169
de Morais Cardoso, L., Pinheiro, S. S., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2017). Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical reviews in food science and nutrition 57, 372-390. https://doi.org/10.1080/10408398.2014.887057
de Sousa, A. R., de Castro Moreira, M. E., Toledo, R. C. L., dos Anjos Benjamin, L., Queiroz, V. A. V., Veloso, M. P., & Martino, H. S. D. (2018). Extruded sorghum (Sorghum bicolor L.) reduces metabolic risk of hepatic steatosis in obese rats consuming a high fat diet. Food Research International, 112, 48-55. https://doi.org/10.1016/j.foodres.2018.06.004
Devi, N. L., Shobha, S., Tang, X., Shaur, S. A., Dogan, H., & Alavi, S. (2013). Development of protein-rich sorghum-based expanded snacks using extrusion technology." International Journal of Food Properties, 16, 263-276. https://doi.org/10.1080/10942912.2011.551865
Díaz González, D., Morawicki, R., & Mauromoustakos, A. (2019). Effect of nixtamalization treatment of three varieties of grain sorghum on the reduction of total phenolics and their subsequent enzymatic hydrolysis. Journal of Food Processing and Preservation, 43, 14067. https://doi.org/10.1111/jfpp.14067
Dykes, L., Rooney, L. W., Waniska, R. D., & Rooney, W. L. (2005). Phenolic Compounds and Antioxidant Activity of Sorghum Grains of Varying Genotypes. Journal of Agricultural and Food Chemistry, 53, 6813-6818. https://doi.org/10.1021/jf050419e
Elkhalifa, A. E. O., & Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121, 387-392. https://doi.org/10.1016/j.foodchem.2009.12.041
Emmambux, M. N., Stading, M., & Taylor, J. R. N. (2004). Sorghum kafirin film property modification with hydrolysable and condensed tannins. Journal of Cereal Science, 40, 127-135. https://doi.org/10.1016/j.jcs.2004.08.005
Espitia-Hernández, P., Chávez González, M. L., Ascacio-Valdés, J. A., Dávila-Medina, D., Flores-Naveda, A., Silva, T., Sepúlveda, L. (2020). Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition, 1-12. https://doi.org/10.1080/10408398.2020.1852389
Farida, K., Messaoud, B., Bernard, W., & Salah, A. (2020). Antimicrobial activity of aqueous methanolic extracts of Algerian cultivars of sorghum (L.) Moench). Acta Scientifica Naturalis, 7, 71-85. https://doi.org/10.2478/asn-2020-0008
Fideicomisos Instituidos en Relación con la Agricultura FIRA (2019). Panorama Agroalimentario Sorgo, 3-18.
Galdeano, M. C., Tonon, R. V., Menezes, N. D. S., Carvalho, C. W. P. D., Minguita, A. P. D. S., & Mattos, M. D. C. (2018). Influence of milling and extrusion on the sorption properties of sorghum."Brazilian Journal of Food Technology, 21, e2017118 https://doi.org/10.1590/1981-6723.11817
Gallardo, I., Boffill, Y., Ozuna, Y., Gómez, O., Pérez, M., & Saucedo, O. (2013). Producción de bebidas usando sorgo malteado como materia prima para enfermos celíacos. Avances en Ciencias e Ingeniería, 4, 61-74. https://www.redalyc.org/articulo.oa?id=323627689006
Garzón, A. G., Veras, F. F., Brandelli, A., & Drago, S. R. (2022). Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. LWT, 153, 112414. http://doi.org/10.1016/j.lwt.2021.112414
Gaytán-Martínez, M., Cabrera-Ramírez, Á. H., Morales-Sánchez, E., Ramírez-Jiménez, A. K., Cruz-Ramírez, J., Campos-Vega, R., & Mendoza, S. (2017). Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 77, 1-8. https://doi.org/10.1016/j.jcs.2017.06.014
Girard, A. L. and J. M. Awika (2018). Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. Journal of Cereal Science, 84, 112-124. https://doi.org/10.1016/j.jcs.2018.10.009
Hugenholtz, J. (2013). Traditional biotechnology for new foods and beverages. Current Opinion in Biotechnology, 24, 155-159. https://doi.org/10.1016/j.copbio.2013.01.001
Hums, M. E., Moreau, R. A., Powell, M. J., & Hoyt, J. L. (2018). Extraction of surface wax from whole grain sorghum. Journal of the American Oil Chemists' Society, 95, 845-852. https://doi.org/10.1002/aocs.12088
Jiang, H., Hettiararchchy, N. S., & Horax, R. (2018). Physical properties and estimated glycemic index of protein-enriched sorghum based chips. Journal of Food Science and Technology, 53, 891-898. https://doi.org/10.1007/s13197-017-2993-x
Kouton, S. E., Amoussa Hounkpatin, W., Ballogou, V. Y., & Soumanou, M. M. (2017). Nutritional, microbiological and rheological characteristics of porridges prepared from infant flours based on germinated and fermented cereals fortified with soybean. Int. J. Curr. Microbiol. App. Sci, 6, 4838-4852. https://doi.org/10.20546/ijcmas.2017.610.452
Labuschagne, M. T. (2018). A review of cereal grain proteomics and its potential for sorghum improvement. Journal of Cereal Science, 84, 151-158. https://doi.org/10.1016/j.jcs.2018.10.010
Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S. J., Zhang, C., & Holding, D. R. (2018). Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant physiology, 177, 1425-1438. https://doi.org/10.1104/pp.18.00200
Lopes, R. D. C. S. O., de Lima, S. L. S., da Silva, B. P., Toledo, R. C. L., de Castro Moreira, M. E., Anunciação, P. C., & Martino, H. S. D. (2018). Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Research International, 107, 629-638. https://doi.org/10.1016/j.foodres.2018.03.004
Lundin, K. E. and C. Wijmenga (2015). Coeliac disease and autoimmune disease—genetic overlap and screening. Nature reviews Gastroenterology & hepatology, 12, 507-515. https://doi.org/10.1038/nrgastro.2015.136
Luo, C., Zou, L., Sun, H., Peng, J., Gao, C., Bao, L., Sun, S. (2020). A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Frontiers in pharmacology, 11, 153. https://doi.org/10.3389/fphar.2020.00153
Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT - Food Science and Technology, 66, 637-644. https://doi.org/10.1016/j.lwt.2015.08.063
McCallum, J., & Walker, J. (1990). Proanthocyanidins in wheat bran. Cereal Chem, 67, 282-285. https://bit.ly/3vJVyve
McGinnis, M. J., & Painter, J. E. (2020). Sorghum: History, use, and health benefits. Nutrition Today, 55, 38-44. http://dx.doi.org/10.1097/NT.0000000000000391
Mendoza-Wilson, A. M., Balandrán-Quintana, R. R., & Cabellos, J. L. (2020). Thermochemical behavior of sorghum procyanidin trimers with C4–C8 and C4–C6 interflavan bonds in the reaction with superoxide anion radical and H2O2-forming NADH-oxidase flavoenzyme. Computational and Theoretical Chemistry, 112912. https://doi.org/10.1016/j.comptc.2020.112912
Montealegre, Á. R., Celada, P., Bastida, S., & Sánchez-Muniz, F. J. (2018). Acerca de la enfermedad celiaca. Breve historia de la celiaquía. Journal of Negative and No Positive Results, 3, 980-997. https://doi.org/10.19230/jonnpr.2813
Nakamura, Y., Tsuji, S., & Tonogai, Y. (2003). Analysis of proanthocyanidins in grape seed extracts, health foods and grape seed oils. Journal of health science, 49, 45-54. https://doi.org/10.1248/jhs.49.45
Nieblas Morfa, C., Gallardo Aguilar, I., Rodríguez Rodríguez, L., Carvajal Mena, N., González Chávez, J. F., & Pérez Pentón, M. (2016). Obtención de bebidas y otros productos alimenticios a partir de dos variedades de sorgo. Centro Azúcar, 43, 66-78. https://bit.ly/39CpBN3
Olojede, A. O., Sanni, A. I., & Banwo, K. (2020). Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT, 118, 108769. https://doi.org/10.1016/j.lwt.2019.108769
Paiva, C. L., Queiroz, V. A. V., Simeone, M. L. F., Schaffert, R. E., de Oliveira, A. C., & da Silva, C. S. (2017). Mineral content of sorghum genotypes and the influence of water stress. Food Chemistry, 214, 400-405. http://dx.doi.org/10.1016/j.foodchem.2016.07.067
Palacios, C. E., Nagai, A., Torres, P., Rodrigues, J. A., & Salatino, A. (2021). Contents of tannins of cultivars of sorghum cultivated in Brazil, as determined by four quantification methods. Food Chemistry, 337, 127970. https://doi.org/10.1016/j.foodchem.2020.127970
Palavecino, P. M., Ribotta, P. D., León, A. E., & Bustos, M. C. (2019). Gluten‐free sorghum pasta: starch digestibility and antioxidant capacity compared with commercial products. Journal of the Science of Food and Agriculture 99, 1351-1357. https://doi.org/10.1002/jsfa.9310
Pezzali, J. G., Suprabha-Raj, A., Siliveru, K., & Aldrich, C. G. (2020). Characterization of white and red sorghum flour and their potential use for production of extrudate crisps. Plos one, 15, e0234940. https://doi.org/10.1371/journal. pone.0234940
Poquette, N. M., Gu, X., & Lee, S. O. (2014). Grain sorghum muffin reduces glucose and insulin responses in men." Food & function, 5, 894-899. https://doi.org/10.1039/C3FO60432B
Prasad, M. P. R., Rao, B. D., Kalpana, K., Rao, M. V., & Patil, J. V. (2015). Glycaemic index and glycaemic load of sorghum products." Journal of the Science of Food and Agriculture, 95, 1626-1630. https://doi.org/10.1002/jsfa.6861
Przybylska-Balcerek, A., Frankowski, J., & Stuper-Szablewska, K. (2019). Bioactive compounds in sorghum. European Food Research and Technology, 245, 1075-1080. https://doi.org/10.1007/s00217-018-3207-0
Punia, H., Tokas, J., Malik, A., Satpal, & Sangwan, S. (2021). Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications, 49, 343-353. https://doi.org/10.1007/s42976-020-00118-w
Queiroz, V. A. V., da Silva Aguiar, A., de Menezes, C. B., de Carvalho, C. W. P., Paiva, C. L., Fonseca, P. C., & da Conceição, R. R. P. (2018). A low calorie and nutritive sorghum powdered drink mix: Influence of tannin on the sensorial and functional properties. Journal of Cereal Science, 49, 43-49. https://doi.org/10.1016/j.jcs.2017.10.001
Rashwan, A. K., Yones, H. A., Karim, N., Taha, E. M., & Chen, W. (2021). Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science & Technology, 110, 168-182. https://doi.org/10.1016/j.tifs.2021.01.087
Salazar-López, N. J., González-Aguilar, G. A., Rouzaud-Sández, O., Loarca-Piña, G., Gorinstein, S., & Robles-Sánchez, M. (2020). Sorghum bran supplementation ameliorates dyslipidemia, glucose dysregulation, inflammation and stress oxidative induced by a high-fat diet in rats. CyTA-Journal of Food, 18, 20-30. https://doi.org/10.1080/19476337.2019.1702105
Salih, S. A., Ahmed, K. E., Ezzdeen, L. T., & Hamza, A. A. (2020). Effect of fermentation and processing of Sorghum bicolor Grains to produce traditional Sudanese Hulu-Mur on phytochemicals and their biological activities. GSC Biological and Pharmaceutical Sciences, 10, 076-084. https://doi.org/10.30574/gscbps.2020.10.3.0040
Sawadogo-Lingani, H., Owusu-Kwarteng, J., Glover, R., Diawara, B., Jakobsen, M., & Jespersen, L. (2021). Sustainable Production of African Traditional Beers with Focus on Dolo, a West African Sorghum-Based Alcoholic Beverage. Frontiers in Sustainable Food Systems, 5, 143. https://doi.org/10.3389/fsufs.2021.672410
Serna Saldívar, S. O. and D. S. Hernández (2020). Dietary Fiber in Cereals, Legumes, Pseudocereals and Other Seeds. Science and Technology of Fibers in Food Systems, 87-122. https://doi.org/10.1016/B978-0-12-811527-5.00005-8
Servicio de Información Agroalimentaria y Pesquera (SIAP). (2020). Panorama Agroalimentario, 6-19.
Shah, U., Dwivedi, D., Hackett, M., Al-Salami, H., Utikar, R. P., Blanchard, C., Johnson, S. K. (2021). Physicochemical characterisation of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Scientific Reports, 11, 15204. https://doi.org/10.1038/s41598-021-94718-z
Simnadis, T. G., Tapsell, L. C., & Beck, E. J. (2016). Effect of sorghum consumption on health outcomes: a systematic review. Nutrition reviews, 74, 690-707. https://doi.org/10.1093/nutrit/nuw036
Singh, A., Sharma, S., & Singh, B. (2017). Effect of germination time and temperature on the functionality and protein solubility of sorghum flour. Journal of Cereal Science, 131-139. https://doi.org/10.1016/j.jcs.2017.06.003
Singh, A., Sharma, S., Singh, B., & Kaur, G. (2019). In vitro nutrient digestibility and antioxidative properties of flour prepared from sorghum germinated at different conditions. Journal of Food Science and Technology, 76, 3077-3089. https://doi.org/10.1007/s13197-019-03804-8
Slima, S. B., Ktari, N., Trabelsi, I., Moussa, H., Makni, I., & Salah, R. B. (2018). Purification, characterization and antioxidant properties of a novel polysaccharide extracted from Sorghum bicolor (L.) seeds in sausage. International journal of biological macromolecules, 106, 168-178. https://doi.org/10.1016/j.ijbiomac.2017.08.010
Sorour, M., Mehanni, A., Taha, E., & Rashwan, A. (2017). Changes of total phenolics, tannins, phytate and antioxidant activity of two sorghum cultivars as affected by processing. Journal of Food and Dairy Sciences, 87, 267-274 http://dx.doi.org/10.21608/jfds.2017.38699
Sruthi, N. U., Rao, P. S., & Rao, B. D. (2021). Decortication induced changes in the physico-chemical, anti-nutrient, and functional properties of sorghum. Journal of Food Composition and Analysis, 102, 104031. https://doi.org/10.1016/j.jfca.2021.104031
Stefoska-Needham, A., Beck, E. J., Johnson, S. K., & Tapsell, L. C. (2015). Sorghum: an underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Reviews International, 31, 401-437. http://doi.org/10.1080/87559129.2015.1022832
Sullivan, A. C., Pangloli, P., & Dia, V. P. (2018). Kafirin from Sorghum bicolor inhibition of inflammation in THP-1 human macrophages is associated with reduction of intracellular reactive oxygen species. Food and Chemical Toxicology, 111, 503-510. https://doi.org/10.1016/j.fct.2017.12.002
Sun, H., Wang, H., Zhang, P., Ajlouni, S., & Fang, Z. (2020). Changes in phenolic content, antioxidant activity, and volatile compounds during processing of fermented sorghum grain tea. Cereal Chemistry, 97, 612-625. http://doi.org/10.1002/CCHE.10277
Taylor, J., Bean, S. R., Ioerger, B. P., & Taylor, J. R. N. (2007). Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. Journal of Cereal Science, 46, 22-31. http://doi.org/10.1016/j.jcs.2006.11.001
Taylor, J., Taylor, J. R. N., Belton, P. S., & Minnaar, A. (2009). Kafirin Microparticle Encapsulation of Catechin and Sorghum Condensed Tannins. Journal of Agricultural and Food Chemistry, 57, 7523-7528. http://doi.org/10.1021/jf901592q
Teferra, T. F. and J. M. Awika (2019). Sorghum as a healthy global food security crop: Opportunities and challenges. Cereal Foods World, 64, 1-8. https://doi.org/10.1094/CFW-64-5-0054
Treviño-Salinas, M., Perales-Torres, A., Castillo-Ruíz, O., Montes-García, N., Lizarazo-Ortega, C., Navarro-Cortez, R., & Rodríguez-Castillejos, G. (2021). Proximal analysis and profile of fatty acids on six varieties of white grain sorghum with potential use in human consumption. CyTA-Journal of Food, 19, 547-551. https://doi.org/10.1080/19476337.2021.1928757
Vanhercke, T., Belide, S., Taylor, M. C., El Tahchy, A., Okada, S., Rolland, V., ... & Petrie, J. R. (2019). Up‐regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. Plant Biotechnology Journal, 17, 220-232. https://doi.org/10.1111/pbi.12959
Waniska, R. D. (2000). Structure, phenolic compounds, and antifungal proteins of sorghum caryopses. Paper presented at the Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18, 19. https://bit.ly/3LJqL7J
Wu, G., Ashton, J., Simic, A., Fang, Z., & Johnson, S. K. (2018). Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Research International, 103, 509-514. https://doi.org/10.1016/j.foodres.2017.09.05
Xiong, Y., Zhang, P., Luo, J., Johnson, S., & Fang, Z. (2019). Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. Journal of Cereal Science, 85, 6-14. https://doi.org/10.1016/j.jcs.2018.10.012
Xu, J., Wang, W., & Zhao, Y. (2021). Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods, 10, 1921. https://doi.org/10.3390/foods10081921
Yi, C., Li, Y., & Ping, J. (2017). Germination of sorghum grain results in significant changes in paste and texture properties. Journal of texture studies, 48, 386-391. https://doi.org/10.1111/jtxs.12241
Yu, M., Zhu, K., Wang, X., Lu, M., Zhang, L., Fu, X., & Yang, Q. (2020). Comparison of nutritional quality and sensory acceptability of biscuits obtained from wheat, native, or extruded sorghum flour. Cereal Chemistry, 97, 1244-1253. https://doi.org/10.1002/CCHE.10349
Publicado
Cómo citar
-
Resumen884
-
PDF347
-
HTML17