Almidón de camote: Modificaciones enzimáticas, físicas y químicas

Sweet potato starch: Enzymatic, physical and chemical modifications: A review

Autores/as

DOI:

https://doi.org/10.54167/tecnociencia.v15i3.854

Palabras clave:

hidrólisis, gelatinización, propiedades funcionales, amilosa, microestructura

Resumen

El almidón es el principal carbohidrato de reserva en productos vegetales y es ampliamente utilizado en la industria alimentaria. El camote es una fuente importante de almidón, ya que forma parte de su composición química en el rango de 50 - 80%. Sin embargo, en su forma nativa carece de propiedades que lo conviertan es un material ideal con potencial para aplicaciones en productos alimenticios. Por esto, con la finalidad de subsanar tal desventaja se recurre a procesos de modificación que permitan cambiar sus propiedades fisicoquímicas como la cristalinidad, viscosidad, tamaño de gránulo, temperatura de gelatinización, retrogradación, solubilidad, poder de hinchamiento, etc. Las modificaciones del almidón se centran en tres tipos de métodos; los enzimáticos (altamente eficientes), los físicos (diversos y económicos) y los químicos (selectivos). Cada vez resulta de mayor interés probar métodos de modificación en nuevas fuentes de almidón y debido a la alta producción de camote a nivel mundial, es importante mostrar los contrastes de los diferentes métodos utilizados. Por lo tanto, el objetivo de esta revisión es mostrar los estudios realizados para la modificación de almidón de camote y su efecto sobre las propiedades fisicoquímicas.

DOI: https://doi.org/10.54167/tecnociencia.v15i3.854

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abegunde, O. K., Mu, T., Chen, J., & Deng, F. (2013). Food Hydrocolloids Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169–177. https://doi.org/10.1016/j.foodhyd.2013.03.005

Aina, A. J., Falade, K. O., Akingbala, J. O., Titus, P., & Titus, P. (2012). Physicochemical Properties of Caribbean Sweet Potato ( Ipomoea batatas ( L ) Lam ) Starches. Food Bioprocess Technol, 5, 576–583. https://doi.org/10.1007/s11947-009-0316-6

Akin-Ajani, O. D., Itiola, O. A., & Odeku, O. A. (2016). Evaluation of the disintegrant properties of native and modified forms of fonio and sweet potato starches. Starch, 68, 169–174. https://doi.org/10.1002/star.201500188

Altuna, L., Herrera, M.L., & Foresti, M.L. (2018). Food Hydrocolloids Synthesis and characterization of octenyl succinic anhydride modified starches for food applications . A review of recent literature. Food Hydrocolloids, 80, 97–110. https://doi.org/10.1016/j.foodhyd.2018.01.032

Bemiller, J. N., & Huber, K. C. (2015). Physical modification of food starch functionalities. Annual Review of Food Science and Technology, 6, 19–69. https://doi.org/10.1146/annurev-food-022814-015552

FAOSTAT. (2020). Sweet potato. Retrieved on August 10, 2020, from FAO Website: www.fao.org/faostat/ en/#data/QC

Chen, Z., Schols, H.A., & Voragen, A.G.J. (2003). Physicochemical Properties of Starches Obtained from Three Varieties of Chinese Sweet Potatoes. Food Chemistry and Toxicology Physicochemical, 68(2), 431–437. http://dx.doi.org/10.1111/j.1365-2621.2003.tb05690.x

Guo, L. (2018). Sweet potato starch modifed by branching enzyme, β-amylase and transglucosidase. Food Hydrocolloids, 83, 182–189. https://doi.org/10.1016/j.foodhyd.2018.05.005

Guo, L., Li, H., Zhu, Y., & Cui, B. (2019). The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. International Journal of Biological Macromolecules, 1(144), 863–873. https://doi.org/10.1016/j.ijbiomac.2019.09.164

Guo, L., Tao, H., Cui, B., & Janaswamy, S. (2019). The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 277, 504–514. https://doi.org/10.1016/j.foodchem.2018.11.014

Guo, J., Tang, W., Quek, S. Y., Liu, Z., & Lu, S. (2020). Evaluation of structural and physicochemical properties of octenyl succinic anhydride modified sweet potato starch with different degrees of substitution. Journal of Food Science, 85, 666–672. https://doi.org/10.1111/1750-3841.15031

Hizukuri, S. (1985). Relationship between length of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydrate Research, 141, 141, 295–306. https://doi.org/10.1016/S0008-6215(00)90461-0

Huang, T., Zhou, D., Jin, Z., Xu, X., & Chen, H. (2016). Food Hydrocolloids Effect of repeated heat-moisture treatments on digestibility , physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54, 202–210. https://doi.org/10.1016/j.foodhyd.2015.10.002

Issa, A. T., Schimmel, K. A., Worku, M., Shahbazi, A., Ibrahim, S. A., & Tahergorabi, R. (2018). Sweet Potato Starch-Based Nanocomposites: Development, Characterization, and Biodegradability. Starch, 70, 1700273. https://doi.org/10.1002/star.201700273

Kwon, C., Kim, H. R., Moon, T. W., Lee, S. H., & Lee, C. J. (2019). Structural and Physicochemical Characteristics of Granular Malic Acid-Treated Sweet Potato Starch Containing Heat-Stable Resistant Starch. Journal of Chemistry, 1–11. https://doi.org/10.1155/2019/2903252

Li, W., Li, C., Gu, Z., Qiu, Y., Cheng, L., & Hong, Y. (2016). Relationship between structure and retrogradation properties of corn starch treated with 1,4- α -glucan branching enzyme. Food Hydrocolloids, 52, 868–875. https://doi.org/10.1016/j.foodhyd.2015.09.009

Li, Y., Liu, S., Liu, X., Tang, X., & Zhang, J. (2017). The Impact of Heat-Moisture Treatment on Physicochemical Properties and Retrogradation Behavior of Sweet Potato Starch. International Journal OfFood Engineering, 20170001. https://doi.org/10.1515/ijfe-2017-0001

Li, N., Cai, Z., Guo, Y., Xu, T., Qiao, D., Zhang, B., Zhao, S., Huang, Q., Niu, M., Jia, C., Lin, L., & Lin, Q. (2019). Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage. Food Chemistry, 295, 475–483. https://doi.org/10.1016/j.foodchem.2019.05.151

Liao, L., Liu, H., Gan, Z., & Wu, W. (2019). Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment. International Journal of Food Properties, 22(1), 1122–1133. https://doi.org/10.1080/10942912.2019.1626418

Liu, Y., Chen, J., Luo, S., Li, C., Ye, J., Liu, C., & Gilbert, R. G. (2017). Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers, 175, 265–272. https://doi.org/10.1016/j.carbpol.2017.07.084

Lv, Q., Li, G., Xie, Q., Zhang, B., Li, X., Pan, Y., & Chen, H. (2018). Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch. Food Chemistry, 256, 413–418. https://doi.org/10.1016/j.foodchem.2018.02.147

Martínez, P., Peña, F., Bello-Pérez, L.A., Nuñez-Santiago, C., Yee-Madeira, H., & Velezmoro, C. (2019). Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chemistry: X, X 2 (2019) 100030. https://doi.org/10.1016/j.fochx.2019.100030

Minh, N. P. (2021). Peracetic acid concentration and starch slurry ratio on functional properties of oxidized sweet potato (Ipomoea batatas (L.) Lam.) starch. Plant Science Today, 8(1), 112–117. http://dx.doi.org/10.14719/pst.2021.8.1.957

Mu, T., Sun, H. S., Zhang, M., & Wang, C. (2017). Sweet Potato Starch and its Series Products. In Sweet Potato Processing Technology (pp. 7–9). http://dx.doi.org/10.1016/B978-0-12-812871-8.00001-5

Mu, T. & Jaspreet, S. (2019). Sweet potato: chemistry, processing, and nutrition—an introduction. In Sweet Potato: Chemistry, Processing, and Nutrition (pp. 1–2).

Na, J. H., Kim, H. R., Kim, Y., Lee, J. S., Park, H. J., Moon, T. W., & Lee, C. J. (2020). Structural characteristics of low-digestible sweet potato starch prepared by heat-moisture treatment. International Journal of Biological Macromolecules, 151, 1049–1057. https://doi.org/10.1016/j.ijbiomac.2019.10.146

Naguleswaran, S., Vasanthan, T., Hoover, R., & Bressler, D. (2014). Food Hydrocolloids Amylolysis of amylopectin and amylose isolated from wheat , triticale , corn and barley starches. Food Hydrocolloids, 35, 686–693. https://doi.org/10.1016/j.foodhyd.2013.08.018

Rahman, M. H., Mu, T. H., Zhang, M., Ma, M. M., & Sun, H. N. (2020). Comparative study of the effects of high hydrostatic pressure on physicochemical, thermal, and structural properties of maize, potato, and sweet potato starches. Journal of Food Processing and Preservation, 44(11), 1–11. https://doi.org/10.1111/jfpp.14852

Remya, R., Jyothi, A. N., & Sreekumar, J. (2018). Morphological, structural and digestibility properties of RS4 enriched octenyl succinylated sweet potato, banana and lentil starches. Food Hydrocolloids, 82, 219–229. https://doi.org/10.1016/j.foodhyd.2018.04.009

Rodrigues, T. P., Landi, C. M., do Carmo, E., Jane, J. lin, & Leonel, M. (2019). Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. Journal of Food Science and Technology, 56(1), 376–383. https://doi.org/10.1007/s13197-018-3498-y

Shariffa, Y. N., Uthumporn, U., Karim, A. A., & Zaibunnisa, A. H. (2017). Hydrolysis of native and annealed tapioca and sweet potato starches at sub- gelatinization temperature using a mixture of amylolytic enzymes. International Food Research Journal, 24(5), 1925–1933. http://ifrj.upm.edu.my/24%20(05)%202017/(12).pdf

Singh, N., & Kaur, L. (2004). Morphological , thermal , rheological and retrogradation properties of potato starch. Journal of the Science of Food and Agriculture, 84, 1241–1252. https://doi.org/10.1002/jsfa.1746

Soltovski, C., Camila, D. O., Bet, D., Zabian, R., Bisinella, B., Henrique, L., Colman, D., & Schnitzler, E. (2018). Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry, 133, 1491–1498. https://doi.org/10.1007/s10973-018-7196-9

Thanh, P., Trung, B., Bui, L., Ngoc, B., Hoa, P. N., Ngoc, N., Tien, T., & Hung, P. Van. (2017). Impact of Heat-moisture and Annealing Treatments on Physicochemical Properties and Digestibility of Starches from Different Colored Sweet Potato Varieties. International Journal of Biological Macromolecules, 105, 1071–1078. https://doi.org/10.1016/j.ijbiomac.2017.07.131

Trancoso-Reyes, N., Ochoa-Martínez, L. A., Bello-Pérez, L. A., Morales-Castro, J., Estévez-Santiago, R., & Olmedilla-Alonso, B. (2016). Effect of pre-treatment on physicochemical and structural properties, and the bioaccessibility of β-carotene in sweet potato flour. Food Chemistry, 200, 199–205. https://doi.org/10.1016/j.foodchem.2016.01.047

Ulfa, G. M., Putri, W. D. R., Fibrianto, K., & Widjanaarko, S. B. (2021). Optimization studies on pre-gelatinized sweet potato starch influenced by temperature and time. Food Research, 5(2), 25–30 https://doi.org/10.26656/fr.2017.5(S2).017

Vermeylen, R., Goderis, B., Reynaers, H., & Delcour, J. A. (2004). Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromolecules, 5, 1775–1786. https://doi.org/10.1021/bm0499132

Wang, H., Liu, Y., Chen, L., Li, X., Wang, J., & Xie, F. (2018). Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry, 242, 323–329. https://doi.org/10.1016/j.foodchem.2017.09.014

Wang, H., Xu, K., Liang, Y., Zhang, H., Chen, L., Xu, K., Liang, Y., Zhang, H., & Chen, L. (2020). Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 63(104868). https://doi.org/10.1016/j.ultsonch.2019.104868

Wang, X., Hu, A., Zheng, J., Li, L., Li, L., & Li, Y. (2020). Physicochemical properties and structure of annealed sweet potato starch: effects of enzyme and ultrasound. Starch, 72, 1900247. https://doi.org/10.1002/star.201900247

Zhang, B., Wu, H., Gou, M., Xu, M., Liu, Y., Jing, L., Zhao, K., & Jiang, H. (2019). The Comparison of Structural , Physicochemical , and Digestibility Properties of Repeatedly and Continuously Annealed Sweet Potato Starch. Journal of Food Science, 0(0), 1–9. https://doi.org/10.1111/1750-3841.14711

Zhang, D., Mu, T., Sun, H., & He, J. (2019). Effects of different high hydrostatic pressure-treated potato starch on the processing performance of dough-like model systems. Food Research International, 120, 456–463. https://doi.org/10.1016/j.foodres.2018.10.088

Zhang, Y., Chen, L., Yu, K., Dai, Y., Wang, L., Ding, X., Hou, H., & Wang, W. (2020). Mechanochemical effect of ultrasound on sweet potato starch and its influence mechanism on the quality of octenyl succinic anhydride modified starch. Food Science and Technology International, 26(3), 254–264. https://doi.org/10.1177/1082013219883054

Zhu, F., Corke, H., & Bertoft, E. (2011). Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. Carbohydrate Polymers, 84(3), 907–918. https://doi.org/10.1016/j.carbpol.2010.12.039

Ziska, L. H., Runion, G. B., Tomecek, M., Prior, S. A., Torbet, H. A., & Sicher, R. (2009). An evaluation of cassava , sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass and Bioenergy, 33(11), 1503–1508. https://doi.org/10.1016/j.biombioe.2009.07.014

Descargas

Publicado

2021-12-03

Cómo citar

Ochoa-Martínez, L. A., Luna Solís, H. A., & Bermúdez Quiñones, G. (2021). Almidón de camote: Modificaciones enzimáticas, físicas y químicas: Sweet potato starch: Enzymatic, physical and chemical modifications: A review. TECNOCIENCIA Chihuahua, 15(3), e 854. https://doi.org/10.54167/tecnociencia.v15i3.854
Metrics
Vistas/Descargas
  • Resumen
    1606
  • PDF
    1122
  • HTML
    20

Métrica