El género Fouquieria: una revisión de aspectos etnobotánicos, fitoquímica y actividad biológica
The genus Fouquieria: description and review of ethnobotanical, phytochemical, and biotechnological aspects
DOI:
https://doi.org/10.54167/tecnociencia.v15i3.840Palabras clave:
plantas medicinales, fitoquímica, actividad biológica, biotecnologíaResumen
Las plantas del género Fouquieria se distribuyen en las zonas áridas de México y Estados Unidos de América. Siendo los estados de Durango, Zacatecas, Coahuila, San Luis Potosí, Sonora, Baja California, Baja California Sur y Chihuahua donde éstas se distribuyen especialmente en México; y en Arizona, Nuevo México, Nevada, Colorado, y Utah en Estados Unidos de América. Tienen usos diversos ya sea como plantas de ornato, plantas medicinales o alimento. Las infrutescencias de este género son en forma de panícula, color rojo anaranjado de forma alargada y acampanada. Según la comunidad rural, los tallos, raíces y flores de estas especies se utilizaban en la medicina tradicional para tratar enfermedades cardiovasculares y trastornos del sistema urinario, entre otras. Hoy en día, las investigaciones demuestran que los extractos tienen entre algunas otras actividades, la antimicrobiana, antihelmíntica, e insecticida, cuyos efectos son atribuidos a metabolitos secundarios (fenoles, saponinas terpenoides, alcanos, etc.). En esta revisión se dan a conocer los usos etnobotánicos, características fitoquímicas, actividad biológica y estudios tecnológicos reportados del género Fouquieria.
Descargas
Citas
Abd El-Ghani M.M., Huerta-Martínez F.M., Hongyan L., Qureshi R. (2018) Erratum to: Plant Responses to Hyperarid Desert Environments. In: Plant Responses to Hyperarid Desert Environments. Springer, Cham. http://doi.org/10.1007/978-3-319-59135-3_14
Aguirre-Liguori J.A., Scheinvar E., Eguiarte L.E. (2014). Gypsum soil restriction drives genetic differentiation in Fouquieria shrevei (Fouquieriaceae). American Journal of Botany. 101(4):730–736. http://doi.org/10.3732/ajb.1400031
Alice L.A., Campbell C.S. (2017). Phylogeny of Rubus (Rosaceae) Based on Nuclear Ribosomal DNA Internal Transcribed Spacer Region Sequences. American Journal of Botany. 86(1):81–97. http://doi.org/10.2307/2656957
Álvarez-Castañeda S.T., Correa-Ramírez M.M., Trujano-Álvarez A.L. (2006). Notes on Notiosorex crawfordi (coues) from two oases in the Baja California peninsula, México. Journal of Arid Environments. 66(4):773–777. http://doi.org/10.1016/j.jaridenv.2005.12.004
Amundson R., Franco-Vizcaíno E., Graham R.C., DeNiro M. (1994). The relationship of precipitation seasonality to the flora and stable isotope chemistry of soils in the Vizcaíno desert, Baja California, México. Journal of Arid Environments. 28(4):265–279. http://doi.org/10.1016/S0140-1963(05)80048-5
Andrade-Cetto A., Heinrich M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology. 99(3):325–348. http://doi.org/10.1016/j.jep.2005.04.019
Arnaud G., Carbajal-Márquez R.A., Rodríguez-Canseco J., Ferreyra E. (2014). Primeros registros de la cascabel roja (Crotalus ruber) en la isla Coronados, golfo de California, México. Revista Mexicana de Biodiversidad. 85(1):322–324. http://doi.org/10.7550/rmb.40435
Arriaga L and Maya Y. (2007). Spatial variability in decomposition rates in a desert scrub of Northwestern Mexico. Plant Ecology. 189(2):213–225. http://doi.org/10.1007/s11258-006-9178-4
Arundel S.T. (2005). Using spatial models to establish climatic limiters of plant species’ distributions. Ecological Modelling Journal. 182(2):159–181. http://doi.org/10.1016/j.ecolmodel.2004.07.016
Avendaño A., Casas A., Dávila P., Lira R. (2006). Use forms, management and commercialization of “pochote” Ceiba aesculifolia (H.B. & K.) Britten & Baker f. subsp. parvifolia (Rose) P.E. Gibbs & Semir (Bombacaceae) in the Tehuacán Valley, Central Mexico. Journal of Arid Environments. 67(1):15–35. http://doi.org/10.1016/j.jaridenv.2006.02.004
Avila-Lovera E., Garcillán P.P. (2021). Phylogenetic signal and climatic niche of stem photosynthesis in the mediterranean and desert regions of California and Baja California Peninsula. American Journal of Botany. 108(2):334–345. http://doi.org/10.1002/ajb2.1572
Axelrod D.I. (1978). The Origin of Coastal Sage Vegetation, Alta and Baja California. American Journal of Botany. 65(10):1117–1131. http://doi.org/10.1002/j.1537-2197.1978.tb06179.x
Bashan Y., Khaosaad T., Salazar B.G., Ocampo J.A., Wiemken A., Oehl F., Vierheiling H. (2007). Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees - Struct Funct. 21(3):329–335. http://doi.org/10.1007/s00468-007-0126-2
Baskin C.C., Baskin J.M. (2014). A Geographical Perspective on Germination Ecology: Tropical and Subtropical Zones. Seeds. Academic Press. 375–590. http://doi.org/10.1016/b978-0-12-416677-6.00009-3
Bate-Smith E.C. (1964). Chemistry and taxonomy of Fouquieria splendens Engelm: A new member of the asperuloside group. Phytochemistry. 3(5):623–625. http://doi.org/10.1016/S0031-9422(00)82938-6
Behnke H. D. (1976). Sieve‐Element Plastids of Fouquieria, Frankenia (Tamaricales), and Rhabdodendron (Rutaceae), Taxa Sometimes Allied with Centrospermae (Caryophyllales). Taxon. 25(2–3):265–268. http://doi.org/10.2307/1219452
Bi Y., Liu X.X., Zhang H.Y., Yang X., Liu Z.Y., Lu J., Lewis P.J., Wang Ch.Z., Xu J.Y., Meng Q.G., Ma K., and Yuan Ch.S. (2017). Synthesis and antibacterial evaluation of novel 3-substituted ocotillol-type derivatives as leads. Molecules. 22(4):1–10. http://doi.org/10.3390/molecules22040590
Bi Y., Yang X., Zhang T., Liu Z., Zhang X., Lu J., Cheng K., Xu J. Wang H., Lv G., Lewis P.J., Meng Q., Ma C. (2015). Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. European Journal of Medical Chemistry. 101:71–80. http://doi.org/10.1016/j.ejmech.2015.06.021
Bobich E.G, Huxman T.E. (2009). Dry mass partitioning and gas exchange for young ocotillos (Fouquieria splendens) in the sonoran desert. International Journal of Plant Science. 170(3):283–289. http://doi.org/10.1086/596331
Bowers J.E. (2006). Branch length mediates flower production and inflorescence architecture of Fouquieria splendens (ocotillo). Plant Ecology. 186(1):87–95. http://doi.org/10.1007/s11258-006-9114-7
Brown C.D. (1998). Reproduced with permission of the copyright owner. Further reproduction prohibited without. Journal of Allergy and Clinical Immunology. 130(2):556. http://doi.org/10.1016/j.jaci.2012.05.050
Bullock S.H., Heath D. (2006). Growth rates and age of native palms in the Baja California desert. Journal of Arid Environments. 67(3):391–402. http://doi.org/10.1016/j.jaridenv.2006.03.002
Bullock S.H., Martijena N.E., Webb R.H., Turner R.M. (2005). Twentieth century demographic changes in cirio and cardón in Baja California, México. Journal of Biogeography. 32(1):127–143. http://doi.org/10.1111/j.1365-2699.2004.01152.x
Búrquez A., Martínez-Yrízar A., Núñez S., Quintero T., Aparicio A. (2010). Aboveground biomass in three Sonoran Desert communities: Variability within and among sites using replicated plot harvesting. Journal of Arid Environments. 74(10):1240–1247. http://doi.org/10.1016/j.jaridenv.2010.04.004
Cross A.T., Thompson G.G., Zaitzeff J.B. (1966). Source and distribution of palynomorphs in bottom sediments, southern part of gulf of california. Elsevier Publishing. 4:467–524.
Cueva-Rodríguez A., Yépez E.A., Garatuza-payán J., Watts C.J. (2012). Respiración de suelo en ecosistemas design and use of a portable system for measuring soil respiration in ecosystems. Terra latinoamerica. 30:327–336. https://bit.ly/3OXvRyU
Currah L. (2018). Onions and Allied Crops: Botany, Physiology, and Genetics. Chapter 6: Pollination biology. Rabinowitch, H.D., & Brewster, J.L. (Eds.). CRC Press. http://doi.org/10.1201/9781351075169
Cyrus M. (Ed.) (1990). The Biology and Utilization of Shrubs. Stony Brook University. http://doi.org/10.1086/416637
Damtoft S., Rosendal-Jensen S., Juhl-Nielsen B. (1993). Iridoid glucosides in epacridaceae. Phytochemistry. 33(2):377–378. http://doi.org/10.1016/0031-9422(93)85522-S
Davis T.J. (2011). Phenotypic Variation in Inflorescences of Fouquieria burragei (Fouquieriaceae). Cactus Succulent Journal. 83(2):61–66. http://doi.org/10.2985/0007-9367-83.2.61
De la Luz L., Navarro P., Breceda A. (2000). A transitional xerophytic tropical plant community of the Cape Region, Baja California. Journal of Vegetation Science. 11(4):555–564. http://doi.org/10.2307/3246585
De-Nova J.A., Sánchez-Reyes L.L., Eguiarte L.E., Magallón S. (2018). Recent radiation and dispersal of an ancient lineage: The case of Fouquieria (Fouquiericeae, Ericales) in North American deserts. Molecular Phylogenetics and Evolution. 126:92–104. http://doi.org/10.1016/j.ympev.2018.03.026
Derosa G., Maffioli P., Sahebkar A. (2016) Ellagic Acid and Its Role in Chronic Diseases. In: Gupta S., Prasad S., Aggarwal B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology. Springer Cham. http://doi.org/10.1007/978-3-319-41334-1_20
Escoto-Rodríguez M., Bullock S.H. (2002). Long-term growth rates of cirio (Fouquieria columnaris), a giant succulent of the Sonoran Desert in Baja California. Journal of Arid Environments 50(4):593–611. http://doi.org/10.1006/jare.2001.0921
Ezcurra E., Mellink E. (2013). Desert Ecosystems. Encyclopedia of Biodiversity. Elsevier Publishing. http://doi.org/10.1016/B978-0-12-384719-5.00380-4
Espinoza-Mellado M., López-Villegas E., López-Gómez M., Rodríguez-Tovar A., García-Pineda M., Rodríguez-Doratez A. (2021). Biotization and in vitro plant cell cultures: plant endophyte strategy in response to heavy metals knowledge in assisted phytoremediation. Microbe Mediated Remediation of Environmental Contaminants. 27-36. http://doi.org/10.1016/B978-0-12-821199-1.00003-1
Franco-Vizcaíno A., Goldstein G., Ting I.P. (1990). Comparative gas exchange of leaves and bark in three stem succulents of Baja California. American Journal of Botany. 77(10):1272–1278. http://doi.org/10.1002/j.1537-2197.1990.tb11379.x
Franco-Vizcaíno E. (1994). Water regime in soil and plants along an aridity gradient in central Baja California, Mexico. Journal of Arid Environments. 27, 309-323. http://doi.org/10.1006/jare.1994.1066
Gallina S., Feria L.G., González-Trápaga R. (2017). Ocotillo flowers as food resource for the mule deer during the dry season. Therya. 8(2):185–188. http://doi.org/10.12933/therya-17-483
Gartner B.L. (Ed.). (1995). Plant stems. Physiology and functional morphology. Academic Press.
Gorelick R. (2008). Fouquieria burragei. Cactus and Succulent Journal. 80(4):204–207. http://doi.org/10.2985/0007-9367(2008)80[204:fb]2.0
Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. (2000). Plants used against cancer - An extension of the work of Jonathan Hartwell. J Ethnopharmacology. 73(3):347–377. http://doi.org/10.1016/S0378-8741(00)00341-X
Guerrero L. (2017). Evaluación de la respuesta de cultivos celulares de (fouquieria splendens ssp. breviflora) fouquieriaceae bajo estrés hídrico. Acta biologica colombiana. 22(2):149–156. http://doi.org/10.15446/abc.v22n2.56809
Guerrero-Cárdenas, I., Álvarez-Cárdenas, S., Gallina, S., Corcuera, P., Ramírez-Orduña, R., & Tovar-Zamora, I. (2018). Variación estacional del contenido nutricional de la dieta del borrego cimarrón del desierto (Ovis canadensis weemsi), en Baja California Sur, México. Acta Zoológica Mexicana. 34(1), 1-18. http://doi.org/10.21829/azm.2018.3412113
Gutiérrez-Ruacho O., Coronado M.L., Sánchez-Teyer F., Sánchez A., Gutiérrez A., Esqueda M. (2018). Abundance of rhizospheric bacteria and fungi associated with Fouquieria columnaris at Punta Cirio, Sonora, Mexico. Revista Mexicana de Biodiversidad. 89(2):541–552. http://doi.org/10.22201/ib.20078706e.2018.2.1620
Hegnauer R. (1989). Chemotaxonomie Der Pflanzen. In an overview of the distribution and the systematic importance of plant substances. Springer Link
Henrickson J. (1967). Pollen morphology of the Onagraceae. Review Palaeobotany and Palynoly. 3(1–4):163–180. http://doi.org/10.1016/0034-6667(67)90050-4
Henrickson J. A (1972). Taxonomic Revision of the Fouquieriaceae. Aliso. 7(4):439–537. http://doi.org/10.5642/aliso.19720704.08
Herrera-García M., Rodríguez-Dorantes A., Guerrero-Zúñiga L. (2008). Evaluación del crecimiento, actividad de hemoperoxidasas y remoción de fenantreno de los cultivos celulares de Fouquieria splendens y Fouquieria fasciculata. Polibotánica. (25):101–119. https://bit.ly/3F9jqM9
Hinojo-Hinojo C., Castellanos A.E., Huxman T., Rodriguez J.C., Vargas R., Romo Leon J., Biederman J. (2019). Native shrubland and managed buffelgrass savanna in drylands: Implications for ecosystem carbon and water fluxes. Agriculture and Forest Meteorology. 268:269–278. http://doi.org/10.1016/j.agrformet.2019.01.030
Hong A.H., Sullivan F.R. (2013). Towards an idea-centered, principle-base design to as creation approach support learning knowledge. Educational Technology Research Development. 57(5):613–627. http://doi.org/10.1007/s11423-009-9122-0
Humphrey R.R. (1931). A study of Idria columnari and Fouquieria splendens. American Journal of Botany. 22(2) 184–207. http://doi.org/10.2307/2436008
Humphrey R.R. (1935). A Study of Idria Columnaris and Fouquieria Splendens. American Journal of Botany. 22(2):184–207. http://doi.org/10.1002/j.1537-2197.1935.tb05015.x
Johansen DA. (1936). Morphology and Embryology of Fouquieria. American Journal of Botany 23(2):95–99. http://doi.org/10.1002/j.1537-2197.1936.tb08959.x
Johansen DA. (1936). Morphology and Embryology of Fouquieria. American journal of Botany. 23(2):95–99. http://doi.org/10.2307/2436301
Johnson L.A., Chan L.M., Weese T.L., Busby L.D., McMurry S. (2008). Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae). Molecular Phylogenetics and Evolution. 48(3):997–1012. http://doi.org/10.1016/j.ympev.2008.05.036
Killingbeck K.T. (2006). Loss of long-shoot leaves may mask terminal stem segment age in ocotillo (Fouquieria splendens). Haseltonia. (12):11–12. http://doi.org/10.2985/1070-0048(2006)12%5b11:LOLLMM%5d2.0.CO;2
Killingbeck K.T. (2019). Stem succulence controls flower and fruit production but not stem growth in the desert shrub ocotillo (Fouquieria splendens). American Journal of Botany. 106(2):223–230. http://doi.org/10.1002/ajb2.1237
Kreulen D.A. (1989). Ecological Systems of the Geobiosphere. 2. Tropical and Subtropical Zonobiomes. Journal of Range Management. 42 (3) 260-264. http://doi.org/10.2307/3899486
Krochmal A., Paur S., Duisberg P. (1954). Useful native plants in the American southwestern deserts. Economic Botany. 8(1):3–20. http://doi.org/10.1007/BF02898875
Kuila A, Sharma V. (Eds.) (2018). Principles and Applications of Fermentation Technology. Wiley Online Library. http://doi.org/10.1002/9781119460381
Kurtz E.B. (1958). A survey of some plant waxes of Southern Arizona. Journal of the American Oil Chemist´s Society. 35(9):465–467. http://doi.org/10.1007/BF02539916
Landis J.B., Bell C.D., Hernandez M., Zenil-Ferguson R., McCarthy E.W., Soltis D.E., Soltis P.S. (2018) Evolution of floral traits and impact of reproductive mode on diversification in the phlox family (Polemoniaceae). Molecular Phylogenetics and Evolution. 127:878-890. http://doi.org/10.1016/j.ympev.2018.06.035
Lima L.R., Andrade F.K., Alves D.R., De Morais S.M., Vieira R.S. (2021). Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. International Journal of Biological Macromolecules. 167:1361–1370. http://doi.org/10.1016/j.ijbiomac.2020.11.090
Lopez Z.R., Rodriguez-Navarro J.L. (2016). Variance of Size-Age Curves : Bootstrapping with Autocorrelation Wiley Publishers.85(8):2114–2117.
López-Jiménez E., Vasquez-Gomez J.I., Sanchez-Acevedo M.A., Herrera-Lozada J.C., Uriarte-Arcia A.V. (2019). Columnar cactus recognition in aerial images using a deep learning approach. Ecological Informatics. 52:131–138. http://doi.org/10.1016/j.ecoinf.2019.05.005
Loredo-Portales R., Castillo-Michel H., Aquilanti G., De La Rosa-Álvarez M.G, Rocha-Amador D.O., Vogel-Mikus K., Kump P., Cruz-Jiménez G. (2017). Synchrotron based study of as mobility and speciation in tailings from a mining site in Mexico. Journal Environmental of Chemistry Engineering. 5(1):1140–1149. http://doi.org/10.1016/j.jece.2017.01.019
Majure L.C., Baker M.A., Cloud-Hughes M., Salywon A., Neubig K.M. (2019). Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. American Journal of Botany. 106(10):1327–1345. http://doi.org/10.1002/ajb2.1364
Martínez M. (1945). Breve relación de algunas de las principales plantas observadas en el distrito sur de la baja california. Botanical Sciences. 2, 1–14. http://doi.org/10.17129/botsci.917
Maya Y. y Arriaga L. (1996). Litterfall and phenological patterns of the dominant overstorey species of a desert scrub community in north-western Mexico. Journal of Arid Environments. 34(1):23–35. http://doi.org/10.1006/jare.1996.0090
McAuliffe J.R. (1991). Demographic shifts and plant succession along a late Holocene soil chronosequence in the Sonoran Desert of Baja California. Journal of Arid Environments 20(2):165–178. http://doi.org/10.1016/s0140-1963(18)30706-7
Menchaca Vega M., Rivas Morales C., Verde Star J., Oranday Cárdenas A., Rubio Morales M.E., Núñez González M.A. y Serrano Gallardo L.B. (2013). Antimicrobial activity of five plants from Northern Mexico on medically important bacteria. African Journal of Microbiology Research. 7(43):5011–5017. http://doi.org/10.5897/ajmr12.1759
Méndez-Rodríguez L.C, Álvarez-Castañeda S.T. (2016). Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment. Bulletin of Environmental Contamination and Toxicology. 97(1):44–49. http://doi.org/10.1007/s00128-016-1826-3
Molina Guerra V.M., Cervantes Balderas J.M., Soto Mata B., Alanís Rodríguez E., Marroquín-Castillo J.J., Sarmiento Muñoz T.I. (2017). Composición y estructura del matorral desértico rosetófilo del sureste de Coahuila, México Composition and structure of a rosetophyllus desert scrub of southeast Coahuila, Mexico. Polibotánica. 44:67–77. http://doi.org/10.18387/polibotanica.44.5
Monreal-García H. Almaraz-Abarca N., Ávila-Reyes J., Torres-Ricario R., González-Elizondo S., Herrera-Arrieta Y., and Gutiérrez-Velázquez M.V. (2019). Phytochemical variation among populations of Fouquieria splendens (Fouquieriaceae). Botanical Science. 97(3):398–412. http://doi.org/10.17129/botsci.2191
Moore M. (1989). Medicinal Plants of the Desert and Canyon West: A Guide to Identifying, Preparing, and Using Traditional Medicinal Plants Found in the Deserts and Canyons of the West and Southwest. http://doi.org/10.5860/choice.27-5132
Moore M.J., Jansen R.K. (2006). Molecular evidence for the age, origin, and evolutionary history of the American desert plant genus Tiquilia (Boraginaceae). Molecular Phylogenetics and Evolution. 39(3):668–687. http://doi.org/10.1016/j.ympev.2006.01.020
Morales-Rubio M.E., Espinosa-Leal C., Garza-Padrón R.A. (2016). Cultivo de tejidos vegetales y su aplicación en productos naturales. En: Investigación en plantas de importancia médica. OmniaScience. 351–410. http://doi.org/10.3926/oms.315
Morton C.M., Mori S.A., Prance G.T., Karol K.G., Chase M.W. (1997). Phylogenetic relationships of Lecythidaceae: A cladistic analysis using rbcL sequence and morphological data. American Journal of Botany. 84(4):530–540. http://doi.org/10.2307/2446029
Muller C.T., Moore M.J., Feder Z., Tiley H., Drenovsky R.E. (2017). Phylogenetic patterns of foliar mineral nutrient accumulation among gypsophiles and their relatives in the chihuahua desert. American Journal of Botany. 104(10):1442–1450. http://doi.org/10.3732/ajb.1700245
Nedoff J.A, Ting I.P, Lord E.M. (1985). Structure and Function of the Green Stem Tissue in Ocotillo (Fouquieria splendens). American Journal of Botany. 72(1):143–151. http://doi.org/10.1002/j.1537-2197.1985.tb05352.x
Nickell L.G. (1959). Antimicrobial activity of vascular plants. Economic Botany. 13(4):281–318. http://doi.org/10.1007/BF02885664
Nobel P.S., Zutta B.R. (2005). Morphology, ecophysiology, and seedling establishment for Fouquieria splendens in the northwestern Sonoran Desert. Journal of Arid Environments. 62(2):251–265. http://doi.org/10.1016/j.jaridenv.2004.11.002
Pant P., Rastogi R. (1979). The triterpenoids. Phytochemistry. 18(7):1095–1108. http://doi.org/10.1016/0031-9422(79)80115-6
Pasternak D., Schlissel A (Ed.). (2001). Combating desertification with plants. Springer Publisher. http://doi.org/10.1007/978-1-4615-1327-8
Pérez-Leal R., Torres-Ramos M., Flores-Córdova M.A., González-Franco A.C., Hernandez-Rodríguez A., Soto-Parra J.M. & Robles-Hernandez L. (2020). Phytotoxic and dissuasive activity of Chihuahua desert plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 426-435. http://doi.org/10.15835/nbha4811150
Pérez-Negrón E, Casas A. (2007). Use, extraction rates and spatial availability of plant resources in the Tehuacán-Cuicatlán Valley, Mexico: The case of Santiago Quiotepec, Oaxaca. Journal of Arid Environments. 70(2):356–379. http://doi.org/10.1016/j.jaridenv.2006.12.016
Plouvier V., Favre-Bonvin J. (1971). Les iridoïdes et séco-iridoïdes: Répartition, structure, propriétés, biosynthèse. Phytochemistry. 10(8):1697–1722. http://doi.org/10.1016/S0031-9422(00)86428-6
Pokhilo N.D., Uvarova N.I. (1988). Isoprenoids of various species of the genus Betula. Chemistry of Natural Compounds. 24(3):273–285. http://doi.org/10.1007/BF00598568
Proksch P., Sternburg C., Rodriguez E. (1981). Epicuticular alkanes from desert plants of Baja California. Biochemical Systematics and Ecology. 9(2–3):205–206. http://doi.org/10.1016/03051978(81)900417
Purushothaman K., Venkatanarasimhan M., Sarada A. (1985). Arbortristoside A and B, two iridoid glucosides from nyctanthes arbor-tristis. Phytochemistry. 24:773–776. http://doi.org/10.1016/S0031-9422(00)84892-X
Reinhard K.J., Chavez S.M., Jones J.G., Iñiguez A.M. (2008). Evaluating chloroplast DNA in prehistoric Texas coprolites: medicinal, dietary, or ambient ancient DNA? Journal of Archaeological Science. 35(6):1748–1755. http://doi.org/10.1016/j.jas.2007.11.013
Robinson W.J. (1904). The Spines of Fouquieria. Bulletin of Torrey Botanical Society. 31(1):45–50.
Romm A., Yarnell E.L., Winston D. (2010). Urinary complaints. Elsevier Publishing. http://doi.org/10.1016/B978-0-443-07277-2.00011-8
Sánchez-del Pino I., Alfaro A., Andueza-Noh R.H., Mora-Olivo A., Chávez-Pesqueira M., Ibarra-Morales A., Moore M.J., Flores-Olvera H. (2020). High phylogeographic and genetic diversity of Tidestromia lanuginosa supports full-glacial refugia for arid-adapted plants in southern and central Coahuila, Mexico. American Journal of Botany. 107(9):1296–1308. http://doi.org/10.1002/ajb2.1536.82
Schönenberger J., Grenhagen A. (2005). Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Systematics and Evolution. 254(3–4):233–249. http://doi.org/10.1007/s00606-005-0331-7
Schultheis L.M., Baldwin B.G. (1999). Molecular phylogenetics of Fouquieriaceae: Evidence from nuclear rDNA ITS studies. American Journal of Botany. 86(4):578–589. http://doi.org/10.2307/2656819
Scogin R. (1977). Anthocyanins of the Fouquieriaceae. Biochemical Systematics and Ecology. 5(4):265–267. http://doi.org/10.1016/0305-1978(77)90023-0
Scogin R. (1978). Leaf phenolics of the fouquieriaceae. Biochemical Systematics and Ecology. 6(4):297–298. http://doi.org/10.1016/0305-1978(78)90049-2
Scott Anderson R., Van Devender T.R. (1995). Vegetation history and paleoclimates of the coastal lowlands of Sonora, Mexico - pollen records from packrat middens. Journal of Arid Environments. 30(3):295–306. http://doi.org/10.1016/S0140-1963(05)80004-7
Scott FM. (1932). Some Features of the Anatomy of Fouquieria Splendens. American Journal of Botany. 9(8):673–678. http://doi.org/10.1002/j.1537-2197.1932.tb08851.x
Scott P. (2021). Long-term survival and flowering of ocotillo (Fouquieria splendens) in Texas: A 33-year perspective. Journal of Arid Environments. 193: 104552. http://doi.org/10.1016/j.jaridenv.2021.104552
Simon M. (2001). Plant Systematics. Kew Bulletin. 56 (3) 648-649. http://doi.org/10.2307/4117689
Soltis D.E., Xiang Q-Y, Hufford L. (1995). Relationships and evolution of Hydrangeaceae based on RBC l sequence data. American Journal of Botany. 82(4):504–514. http://doi.org/10.1002/j.1537-2197.1995.tb15671.x
Sternburg C., Rodriguez E. (1982). Hydrocarbons From Pedilanthus Macrocarpus (Euphorbiaceae) of Baja California and Sonora, Mexico. American Journal of Botany. 69(2):214–218. http://doi.org/10.1002/j.1537-2197.1982.tb13250.x
Takhtajan A. (Ed.) (2009). Class Magnoliopsida (Dicotyledons). Flowering Plants. Springer. 7–588. http://doi.org/10.1007/978-1-4020-9609-9_2
Tinoco-Ojanguren C., Díaz A., Martínez J., Molina-Freaner F. (2013). Species diversity and regeneration of native species in Pennisetum ciliare (buffelgrass) pastures from the thornscrub of Sonora, México. Journal of Arid Environments. 97:26–37. http://doi.org/10.1016/j.jaridenv.2013.05.009
Vega M., Rivas C., VerdeJ., Oranday A.,Rubio M., Núñez M., Serrano L. 2013. “Antimicrobial activity of five plants from Northern Mexico on medically important bacteria”. African Journal of Microbiology Research 7(43): 5011–17. http://dx.doi.org/10.5897/AJMR12.1759
Venegas-Barrera C.S. (2008). Stochastic approach to determine spatial patterns of lizard community on a desert island. Acta Oecologica. 33(3):280–290. http://doi.org/10.1016/j.actao.2008.01.002
Vivoni E.R., Watts C.J., Rodríguez J.C., Garatuza-Payan J., Méndez-Barroso L.A., Sainz-Hernández J.A. (2010). Improved land-atmosphere relations through distributed footprint sampling in a subtropical scrubland during the North American monsoon. Journal of Arid Environments. 74(5):579–584. http://doi.org/10.1016/j.jaridenv.2009.09.031
Waser N.M. (1979). Oecologia of Flowering Time in Ocotillo (Fouquieria splendens). Oecologia. 39:107–121. https://doi.org/10.1007/bf00346001
Waterman P.D (1985). Triterpenes from the stem bark of Commiphora Dalzielii. Phytochemistry. 23(12):2925–2928. http://doi.org/10.1016/s0031-9422(00)80607-x
Webb R.H., Salazar-Ceseña M.M. Turner R. (2014). The distribution of Cirio (Fouquieria columnaris) in Baja California, Mexico. Haseltonia. 19(19):26–37. http://doi.org/10.2985/026.019.0105
Webb R.H., Turner R.M. (2015). Biodiversity of Cacti and Other Succulent Plants in Baja California, México. Cactus and Succulent Journal 87(5):206–216. http://doi.org/10.2985/015.087.0504
Webb R.H., Turner R.M. (2020). Biodiversity of Perennial Vegetation in the Desert Regions of Baja California and Baja California Sur, Mexico. Elsevier. http://doi.org/10.1016/b978-0-12-409548-9.11997-9
Whitford W.G., Duval B.D. (2020). Adaptations. En: Ecology of Desert Systems. Elsevier; 135–171. http://doi.org/10.1016/B978-0-12-815055-9.00006-0
Wollenweber E. (1994). External Flavoniods of Ocotillo (Fouquieria splendens). Journal of Biosciences. 689–690. https://bit.ly/3FfMMbC
Xiang Q.Y., Soltis D.E., Soltis P.S. (1998). Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. American Journal of Botany. 85(2):285–297. http://doi.org/10.2307/2446317
Xiang Q.Y., Thomas D.T., Xiang Q.P. (2011). Resolving and dating the phylogeny of Cornales - Effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution. 59(1):123–138. http://doi.org/10.1016/j.ympev.2011.01.016
Zavala-Hurtado J.A., Jiménez M. (2020). Diversity and Uniqueness at Its Best: Vegetation of the Chihuahuan Desert in Plant Diversity and Ecology in the Chihuahuan Desert. (pp.1-17) Springer Publishing. http://dx.doi.org/10.1007/978-3-030-44963-6_1
Zhang Z, Chen Z, Zhang S, Shao X, Zhou Z. (2020). Antibacterial activity of the structurally novel ocotillol-type lactone and its analogues. Fitoterapia. 144:104597. http://doi.org/10.1016/j.fitote.2020.104597
Zhou Z, Ma C, Zhang H, Bi Yi., Chen X., Tian H., Xie X., Meng Q., Lewis P.J., Xu J. (2013). Synthesis and biological evaluation of novel ocotillol-type triterpenoid derivatives as antibacterial agents. European Journal of Medical Chemistry. 68:444–453. http://doi.org/10.1016/j.ejmech.2013.07.041
Publicado
Cómo citar
-
Resumen1247
-
PDF608
-
HTML58