Relación entre probióticos - postbióticos y sus principales efectos bioactivos
Relationship between probiotics - postbiotics and their main bioactive effects
DOI:
https://doi.org/10.54167/tecnociencia.v15i2.836Palabras clave:
alimentos funcionales, probióticos, postbióticos, ultrasonido, cavitaciónResumen
En años actuales y atendiendo las necesidades de los consumidores, se ha incrementado el consumo de alimentos funcionales. Dentro de estos alimentos se encuentran los alimentos que contienen prebióticos y probióticos. Sin embargo, actualmente se han incluido dos términos nuevos, paraprobióticos y postbióticos: los primeros son células microbianas inactivas o no viables, mientras que los postbióticos son factores solubles o metabolitos que son secretados por las bacterias vivas o bien que son liberados después de una lisis celular. Dependiendo de donde se producen los postbióticos se clasifican en metabolitos microbianos (enzimas, lípidos, ácidos orgánicos, polisacáridos y péptidos/proteína) y componentes microbianos (proteínas de superficie celular, ácido lipotéicoico, peptidoglucano, polisacáridos y ácido teicoico). La absorción de estos compuestos se da en las células del intestino, que es donde ejercen su función. Actualmente se emplea el ultrasonido de alta intensidad (UAI) como una herramienta para la obtención de estos compuestos, debido a que este produce un fenómeno llamado cavitación acústica, el cual genera el crecimiento e implosión de burbujas de vapor, generando la formación de poros, también llamada ultrasonoporación, de manera transitoria en la membrana celular, permitiendo con ello el intercambio y liberación de moléculas o postbióticos.
Descargas
Citas
Aguilar-Toalá, J. E., R. Garcia-Varela, H. S. Garcia, V. Mata-Haro, A. F. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75:105–114. https://doi.org/10.1016/j.tifs.2018.03.009
de Almada, Caroline N., Carine N. Almada, R. C. R. Martinez, and A. S. Sant’Ana. 2016. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Elsevier Ltd. http://dx.doi.org/10.1016/j.tifs.2016.09.011
Assimos, D. G. 2020. Re: Metabolomic Profiling of Oxalate-Degrading Probiotic Lactobacillus acidophilus and Lactobacillus gasseri. J. Urol. 203:247–248. https://doi.org/10.1097/01.ju.0000612972.99650.f8
Balthazar, C. F., A. Santillo, J. T. Guimarães, A. Bevilacqua, M. R. Corbo, M. Caroprese, R. Marino, E. A. Esmerino, M. C. Silva, R. S. L. Raices, M. Q. Freitas, A. G. Cruz, and M. Albenzio. 2019. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrason. Sonochem. 51:241–248. https://doi.org/10.1016/j.ultsonch.2018.10.017
Buckow, R., P. S. Chandry, S. Y. Ng, C. M. McAuley, and B. G. Swanson. 2014. Opportunities and challenges in pulsed electric field processing of dairy products. Int. Dairy J. 34:199–212. http://dx.doi.org/10.1016/j.idairyj.2013.09.002
Cabeza, E. A. 2006. Bacterias ácido-lácticas (BAL): Aplicaciones como cultivos estárter para la industria láctea y cárnica. 14:549–566. http://dx.doi.org/10.13140/2.1.2241.2169
Cicenia, A., A. Scirocco, M. Carabotti, L. Pallotta, M. Marignani, and C. Severi. 2014. Postbiotic activities of lactobacilli-derived factors. J. Clin. Gastroenterol. 48:S18–S22. https://doi.org/10.1097/mcg.0000000000000231
Cortés-Martín, A., M. V. Selma, F. A. Tomás-Barberán, A. González-Sarrías, and J. C. Espín. 2020. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol. Nutr. Food Res. 64:1–17. https://doi.org/10.1002/mnfr.201900952
Cuevas-González, P. F., A. M. Liceaga, and J. E. Aguilar-Toalá. 2020. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 136:109502. http://doi.org/10.1016/j.foodres.2020.109502
Fuochi, V., M. A. Coniglio, L. Laghi, A. Rescifina, M. Caruso, A. Stivala, P. M. Furneri, and G. Di Bonaventura. 2019. Metabolic Characterization of Supernatants Produced by Lactobacillus spp . With in vitro Anti- Legionella Activity. 10:1–11. https://doi.org/10.3389/fmicb.2019.01403
Ghosh, S., C. S. Whitley, B. Haribabu, and V. R. Jala. 2021. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cmgh. 11:1463–1482. doi:10.1016/j.jcmgh.2021.02.007. https://doi.org/10.1016/j.jcmgh.2021.02.007
Guimarães, J. T., E. K. Silva, C. S. Ranadheera, J. Moraes, R. S. L. Raices, M. C. Silva, M. S. Ferreira, M. Q. Freitas, M. A. A. Meireles, and A. G. Cruz. 2019. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason. Sonochem. 55:157–164. https://doi.org/10.1016/j.ultsonch.2019.02.025
Hernández-Granados, M. J., and E. Franco-Robles. 2020. Postbiotics in human health: Possible new functional ingredients? Food Res. Int. 137. https://doi.org/10.1016/j.foodres.2020.109660
Huang, G., S. Chen, Y. Tang, C. Dai, L. Sun, H. Ma, and R. He. 2019. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrason. Sonochem. 51:315–324. https://doi.org/10.1016/j.ultsonch.2018.09.033
Klemashevich, C., C. Wu, D. Howsmon, R. C. Alaniz, K. Lee, and A. Jayaraman. 2014. ScienceDirect Rational identification of diet-derived postbiotics for improving intestinal microbiota function. https://doi.org/10.1016/j.copbio.2013.10.006
Koleilat, A. 2019. Beyond probiotics the Postbiotics. Gastroenterol. Hepatol. Open Access. 10:324–326. https://doi.org/10.15406/ghoa.2019.10.00404
Kooiman, K., M. Foppen-Harteveld, A. F. W. Van Der Steen, and N. De Jong. 2011. Sonoporation of endothelial cells by vibrating targeted microbubbles. J. Control. Release. 154:35–41. http://dx.doi.org/10.1016/j.jconrel.2011.04.008
Kudo, N., K. Okada, and K. Yamamoto. 2009. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96:4866–4876. http://dx.doi.org/10.1016/j.bpj.2009.02.072
Liu, Q., Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19:1–11.https://doi.org/10.1186/s12934-020-1289-4
Malashree, L., V. Angadi, K. S. Yadav, and R. Prabha. 2019. “Postbiotics” - One Step Ahead of Probiotics. Int. J. Curr. Microbiol. Appl. Sci. 8:2049–2053. https://doi.org/10.20546/ijcmas.2019.801.214
Mayorgas, A., I. Dotti, and A. Salas. 2021. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol. Nutr. Food Res. 65:1–17. https://doi.org/10.1002/mnfr.202000188
Min, S., G. A. Evrendilek, and H. Q. Zhang. 2007. Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Trans. Plasma Sci. 35:59–73. https://doi.org/10.1109/TPS.2006.889290
Moradi, M., S. A. Kousheh, H. Almasi, A. Alizadeh, J. T. Guimarães, N. Yılmaz, and A. Lotfi. 2020. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19:3390–3415. https://doi.org/10.1111/1541-4337.12613
Moradi, M., R. Molaei, and J. T. Guimarães. 2021. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb. Technol. 143. https://doi.org/10.1016/j.enzmictec.2020.109722
Murata, M., J. Kondo, N. Iwabuchi, S. Takahashi, K. Yamauchi, F. Abe, and K. Miura. 2018. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef. Microbes. 9:855–864. https://doi.org/10.3920/bm2017.0197
Nataraj, B. H., S. A. Ali, P. V. Behare, and H. Yadav. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19:1–22. https://doi.org/10.1186/s12934-020-01426-w
Nishida, K., D. Sawada, Y. Kuwano, H. Tanaka, T. Sugawara, Y. Aoki, S. Fujiwara, and K. Rokutan. 2017. Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. J. Funct. Foods. 36:112–121. http://dx.doi.org/10.1016/j.jff.2017.06.031
Noonan, S., M. Zaveri, E. Macaninch, and K. Martyn. 2020. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr. Prev. Heal. 3:351–362. https://dx.doi.org/10.1136%2Fbmjnph-2019-000053
Peluzio, M. do C. G., J. A. Martinez, and F. I. Milagro. 2021. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci. Technol. 108:11–26. https://doi.org/10.1016/j.tifs.2020.12.004
Plaza-Diaz, J., F. J. Ruiz-Ojeda, M. Gil-Campos, and A. Gil. 2019. Mechanisms of Action of Probiotics. Adv. Nutr. 10:S49–S66. https://doi.org/10.1093/advances/nmy063
Rad, A. H., L. Aghebati-Maleki, H. S. Kafil, and A. Abbasi. 2021a. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr. 61:1787–1803. https://doi.org/10.1080/10408398.2020.1765310
Rad, A. H., L. Aghebati-Maleki, H. S. Kafil, N. Gilani, A. Abbasi, and N. Khani. 2021b. Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety. Biointerface Res. Appl. Chem. 11:14529–14544. https://doi.org/10.33263/BRIAC116.1452914544
Rad, A. H., L. A. Maleki, H. S. Kafil, H. F. Zavoshti, and A. Abbasi. 2020. Postbiotics as novel health-promoting ingredients in functional foods. Heal. Promot. Perspect. 10:3–4. http://dx.doi.org/10.15171/hpp.2020.02
Rodrigues, D., C. H. Santos, T. A. P. Rocha-Santos, A. M. Gomes, B. J. Goodfellow, and A. C. Freitas. 2011. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) Spectroscopy. J. Agric. Food Chem. 59:4955–4961. https://doi.org/10.1021/jf104605r
Ruiz-Briseño, M. del R., K. Sánchez-Reyes, M. Alvarez-Zavala, L. A. González-Hernández, M. Ramos-Solano, and A.-V. J. F. 2018. Homeostasis intestinal: colaboración del sistema inmune con la microbiota. Rev. Médica MD. 9:337–340. https://bit.ly/3swIzey
Santiago-López, L., A. Hernández-Mendoza, H. S. Garcia, V. Mata-Haro, B. Vallejo-Cordoba, and A. F. González-Córdova. 2015. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. Int. J. Dairy Technol. 68:153–165. https://doi.org/10.1111/1471-0307.12202
Shin, H. S., S. Y. Park, D. K. Lee, S. A. Kim, H. M. An, J. R. Kim, M. J. Kim, M. G. Cha, S. W. Lee, K. J. Kim, K. O. Lee, and N. J. Ha. 2010. Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch. Pharm. Res. 33:1425–1431. https://doi.org/10.1007/s12272-010-0917-7
Taranto, M., M. Médici, and G. Font de Valdez. 2005. Alimentos funcionales probióticos Dras . María Pía Taranto , Marta Médici y Graciela Font de Valdez * Probiotic functional foods. Aliment. Pharmacol. Ther. 4:26–34. https://www.redalyc.org/articulo.oa?id=86340104
Teame, T., A. Wang, M. Xie, Z. Zhang, Y. Yang, Q. Ding, C. Gao, R. E. Olsen, C. Ran, and Z. Zhou. 2020. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 7. https://doi.org/10.3389/fnut.2020.570344
Tomasik, Przemyslaw, and Piotr Tomasik. 2020. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. 10. https://doi.org/10.3390/app10041470
Tsilingiri, K., T. Barbosa, G. Penna, F. Caprioli, A. Sonzogni, G. Viale, and M. Rescigno. 2012. Probiotic and postbiotic activity in health and disease: Comparison on a novel polarised ex-vivo organ culture model. Gut. 61:1007–1015. https://doi.org/10.1136/gutjnl-2011-300971
Wegh, Carrie A.M., Sharon Y. Geerlings, Jan Knol, Guus Roeselers, and Clara Belzer. 2019. "Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond" International Journal of Molecular Sciences 20, no. 19: 4673. https://doi.org/10.3390/ijms20194673
Żółkiewicz, J., A. Marzec, M. Ruszczyński, and W. Feleszko. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients. 12:1–17. https://doi.org/10.3390/nu12082189
Publicado
Cómo citar
-
Resumen1240
-
PDF579
-
HTML20