Relación entre probióticos - postbióticos y sus principales efectos bioactivos

Relationship between probiotics - postbiotics and their main bioactive effects

Autores/as

DOI:

https://doi.org/10.54167/tecnociencia.v15i2.836

Palabras clave:

alimentos funcionales, probióticos, postbióticos, ultrasonido, cavitación

Resumen

En años actuales y atendiendo las necesidades de los consumidores, se ha incrementado el consumo de alimentos funcionales. Dentro de estos alimentos se encuentran los alimentos que contienen prebióticos y probióticos. Sin embargo, actualmente se han incluido dos términos nuevos, paraprobióticos y postbióticos: los primeros son células microbianas inactivas o no viables, mientras que los postbióticos son factores solubles o metabolitos que son secretados por las bacterias vivas o bien que son liberados después de una lisis celular. Dependiendo de donde se producen los postbióticos se clasifican en metabolitos microbianos (enzimas, lípidos, ácidos orgánicos, polisacáridos y péptidos/proteína) y componentes microbianos (proteínas de superficie celular, ácido lipotéicoico, peptidoglucano, polisacáridos y ácido teicoico). La absorción de estos compuestos se da en las células del intestino, que es donde ejercen su función. Actualmente se emplea el ultrasonido de alta intensidad (UAI) como una herramienta para la obtención de estos compuestos, debido a que este produce un fenómeno llamado cavitación acústica, el cual genera el crecimiento e implosión de burbujas de vapor, generando la formación de poros, también llamada ultrasonoporación, de manera transitoria en la membrana celular, permitiendo con ello el intercambio y liberación de moléculas o postbióticos.

DOI: https://doi.org/10.54167/tecnociencia.v15i2.836

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Toalá, J. E., R. Garcia-Varela, H. S. Garcia, V. Mata-Haro, A. F. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75:105–114. https://doi.org/10.1016/j.tifs.2018.03.009

de Almada, Caroline N., Carine N. Almada, R. C. R. Martinez, and A. S. Sant’Ana. 2016. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Elsevier Ltd. http://dx.doi.org/10.1016/j.tifs.2016.09.011

Assimos, D. G. 2020. Re: Metabolomic Profiling of Oxalate-Degrading Probiotic Lactobacillus acidophilus and Lactobacillus gasseri. J. Urol. 203:247–248. https://doi.org/10.1097/01.ju.0000612972.99650.f8

Balthazar, C. F., A. Santillo, J. T. Guimarães, A. Bevilacqua, M. R. Corbo, M. Caroprese, R. Marino, E. A. Esmerino, M. C. Silva, R. S. L. Raices, M. Q. Freitas, A. G. Cruz, and M. Albenzio. 2019. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrason. Sonochem. 51:241–248. https://doi.org/10.1016/j.ultsonch.2018.10.017

Buckow, R., P. S. Chandry, S. Y. Ng, C. M. McAuley, and B. G. Swanson. 2014. Opportunities and challenges in pulsed electric field processing of dairy products. Int. Dairy J. 34:199–212. http://dx.doi.org/10.1016/j.idairyj.2013.09.002

Cabeza, E. A. 2006. Bacterias ácido-lácticas (BAL): Aplicaciones como cultivos estárter para la industria láctea y cárnica. 14:549–566. http://dx.doi.org/10.13140/2.1.2241.2169

Cicenia, A., A. Scirocco, M. Carabotti, L. Pallotta, M. Marignani, and C. Severi. 2014. Postbiotic activities of lactobacilli-derived factors. J. Clin. Gastroenterol. 48:S18–S22. https://doi.org/10.1097/mcg.0000000000000231

Cortés-Martín, A., M. V. Selma, F. A. Tomás-Barberán, A. González-Sarrías, and J. C. Espín. 2020. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol. Nutr. Food Res. 64:1–17. https://doi.org/10.1002/mnfr.201900952

Cuevas-González, P. F., A. M. Liceaga, and J. E. Aguilar-Toalá. 2020. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 136:109502. http://doi.org/10.1016/j.foodres.2020.109502

Fuochi, V., M. A. Coniglio, L. Laghi, A. Rescifina, M. Caruso, A. Stivala, P. M. Furneri, and G. Di Bonaventura. 2019. Metabolic Characterization of Supernatants Produced by Lactobacillus spp . With in vitro Anti- Legionella Activity. 10:1–11. https://doi.org/10.3389/fmicb.2019.01403

Ghosh, S., C. S. Whitley, B. Haribabu, and V. R. Jala. 2021. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cmgh. 11:1463–1482. doi:10.1016/j.jcmgh.2021.02.007. https://doi.org/10.1016/j.jcmgh.2021.02.007

Guimarães, J. T., E. K. Silva, C. S. Ranadheera, J. Moraes, R. S. L. Raices, M. C. Silva, M. S. Ferreira, M. Q. Freitas, M. A. A. Meireles, and A. G. Cruz. 2019. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason. Sonochem. 55:157–164. https://doi.org/10.1016/j.ultsonch.2019.02.025

Hernández-Granados, M. J., and E. Franco-Robles. 2020. Postbiotics in human health: Possible new functional ingredients? Food Res. Int. 137. https://doi.org/10.1016/j.foodres.2020.109660

Huang, G., S. Chen, Y. Tang, C. Dai, L. Sun, H. Ma, and R. He. 2019. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrason. Sonochem. 51:315–324. https://doi.org/10.1016/j.ultsonch.2018.09.033

Klemashevich, C., C. Wu, D. Howsmon, R. C. Alaniz, K. Lee, and A. Jayaraman. 2014. ScienceDirect Rational identification of diet-derived postbiotics for improving intestinal microbiota function. https://doi.org/10.1016/j.copbio.2013.10.006

Koleilat, A. 2019. Beyond probiotics the Postbiotics. Gastroenterol. Hepatol. Open Access. 10:324–326. https://doi.org/10.15406/ghoa.2019.10.00404

Kooiman, K., M. Foppen-Harteveld, A. F. W. Van Der Steen, and N. De Jong. 2011. Sonoporation of endothelial cells by vibrating targeted microbubbles. J. Control. Release. 154:35–41. http://dx.doi.org/10.1016/j.jconrel.2011.04.008

Kudo, N., K. Okada, and K. Yamamoto. 2009. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96:4866–4876. http://dx.doi.org/10.1016/j.bpj.2009.02.072

Liu, Q., Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2020. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 19:1–11.https://doi.org/10.1186/s12934-020-1289-4

Malashree, L., V. Angadi, K. S. Yadav, and R. Prabha. 2019. “Postbiotics” - One Step Ahead of Probiotics. Int. J. Curr. Microbiol. Appl. Sci. 8:2049–2053. https://doi.org/10.20546/ijcmas.2019.801.214

Mayorgas, A., I. Dotti, and A. Salas. 2021. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol. Nutr. Food Res. 65:1–17. https://doi.org/10.1002/mnfr.202000188

Min, S., G. A. Evrendilek, and H. Q. Zhang. 2007. Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Trans. Plasma Sci. 35:59–73. https://doi.org/10.1109/TPS.2006.889290

Moradi, M., S. A. Kousheh, H. Almasi, A. Alizadeh, J. T. Guimarães, N. Yılmaz, and A. Lotfi. 2020. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19:3390–3415. https://doi.org/10.1111/1541-4337.12613

Moradi, M., R. Molaei, and J. T. Guimarães. 2021. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb. Technol. 143. https://doi.org/10.1016/j.enzmictec.2020.109722

Murata, M., J. Kondo, N. Iwabuchi, S. Takahashi, K. Yamauchi, F. Abe, and K. Miura. 2018. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef. Microbes. 9:855–864. https://doi.org/10.3920/bm2017.0197

Nataraj, B. H., S. A. Ali, P. V. Behare, and H. Yadav. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19:1–22. https://doi.org/10.1186/s12934-020-01426-w

Nishida, K., D. Sawada, Y. Kuwano, H. Tanaka, T. Sugawara, Y. Aoki, S. Fujiwara, and K. Rokutan. 2017. Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. J. Funct. Foods. 36:112–121. http://dx.doi.org/10.1016/j.jff.2017.06.031

Noonan, S., M. Zaveri, E. Macaninch, and K. Martyn. 2020. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr. Prev. Heal. 3:351–362. https://dx.doi.org/10.1136%2Fbmjnph-2019-000053

Peluzio, M. do C. G., J. A. Martinez, and F. I. Milagro. 2021. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci. Technol. 108:11–26. https://doi.org/10.1016/j.tifs.2020.12.004

Plaza-Diaz, J., F. J. Ruiz-Ojeda, M. Gil-Campos, and A. Gil. 2019. Mechanisms of Action of Probiotics. Adv. Nutr. 10:S49–S66. https://doi.org/10.1093/advances/nmy063

Rad, A. H., L. Aghebati-Maleki, H. S. Kafil, and A. Abbasi. 2021a. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr. 61:1787–1803. https://doi.org/10.1080/10408398.2020.1765310

Rad, A. H., L. Aghebati-Maleki, H. S. Kafil, N. Gilani, A. Abbasi, and N. Khani. 2021b. Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety. Biointerface Res. Appl. Chem. 11:14529–14544. https://doi.org/10.33263/BRIAC116.1452914544

Rad, A. H., L. A. Maleki, H. S. Kafil, H. F. Zavoshti, and A. Abbasi. 2020. Postbiotics as novel health-promoting ingredients in functional foods. Heal. Promot. Perspect. 10:3–4. http://dx.doi.org/10.15171/hpp.2020.02

Rodrigues, D., C. H. Santos, T. A. P. Rocha-Santos, A. M. Gomes, B. J. Goodfellow, and A. C. Freitas. 2011. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) Spectroscopy. J. Agric. Food Chem. 59:4955–4961. https://doi.org/10.1021/jf104605r

Ruiz-Briseño, M. del R., K. Sánchez-Reyes, M. Alvarez-Zavala, L. A. González-Hernández, M. Ramos-Solano, and A.-V. J. F. 2018. Homeostasis intestinal: colaboración del sistema inmune con la microbiota. Rev. Médica MD. 9:337–340. https://bit.ly/3swIzey

Santiago-López, L., A. Hernández-Mendoza, H. S. Garcia, V. Mata-Haro, B. Vallejo-Cordoba, and A. F. González-Córdova. 2015. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. Int. J. Dairy Technol. 68:153–165. https://doi.org/10.1111/1471-0307.12202

Shin, H. S., S. Y. Park, D. K. Lee, S. A. Kim, H. M. An, J. R. Kim, M. J. Kim, M. G. Cha, S. W. Lee, K. J. Kim, K. O. Lee, and N. J. Ha. 2010. Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch. Pharm. Res. 33:1425–1431. https://doi.org/10.1007/s12272-010-0917-7

Taranto, M., M. Médici, and G. Font de Valdez. 2005. Alimentos funcionales probióticos Dras . María Pía Taranto , Marta Médici y Graciela Font de Valdez * Probiotic functional foods. Aliment. Pharmacol. Ther. 4:26–34. https://www.redalyc.org/articulo.oa?id=86340104

Teame, T., A. Wang, M. Xie, Z. Zhang, Y. Yang, Q. Ding, C. Gao, R. E. Olsen, C. Ran, and Z. Zhou. 2020. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 7. https://doi.org/10.3389/fnut.2020.570344

Tomasik, Przemyslaw, and Piotr Tomasik. 2020. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. 10. https://doi.org/10.3390/app10041470

Tsilingiri, K., T. Barbosa, G. Penna, F. Caprioli, A. Sonzogni, G. Viale, and M. Rescigno. 2012. Probiotic and postbiotic activity in health and disease: Comparison on a novel polarised ex-vivo organ culture model. Gut. 61:1007–1015. https://doi.org/10.1136/gutjnl-2011-300971

Wegh, Carrie A.M., Sharon Y. Geerlings, Jan Knol, Guus Roeselers, and Clara Belzer. 2019. "Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond" International Journal of Molecular Sciences 20, no. 19: 4673. https://doi.org/10.3390/ijms20194673

Żółkiewicz, J., A. Marzec, M. Ruszczyński, and W. Feleszko. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients. 12:1–17. https://doi.org/10.3390/nu12082189

Descargas

Publicado

2021-08-18

Cómo citar

Bolivar Jacobo, N. A. ., Reyes Villagrana, R. A. ., & Chávez-Martínez, A. (2021). Relación entre probióticos - postbióticos y sus principales efectos bioactivos : Relationship between probiotics - postbiotics and their main bioactive effects. TECNOCIENCIA Chihuahua, 15(2), e 836. https://doi.org/10.54167/tecnociencia.v15i2.836
Metrics
Vistas/Descargas
  • Resumen
    1277
  • PDF
    597
  • HTML
    20

Métrica