Tecnologías emergentes no térmicas para la conservación de carne fresca y productos cárnicos

Non-thermal methods for the preservation of fresh meat and meat products

Autores/as

DOI:

https://doi.org/10.54167/tecnociencia.v15i2.829

Palabras clave:

calidad de la carne, reducción microbiana, ultrasonido de alta intensidad, vida de anaquel

Resumen

La búsqueda por una mejor conservación de la carne y sus productos es una constante dentro de la industria alimentaria. Dentro de los procesos de conservación, la descontaminación de microorganismos es el área en la que más se enfoca la investigación, el desarrollo y la innovación de metodologías, ya sea por un beneficio al producto alimenticio durante su almacenamiento, procesamiento o vida de anaquel, o por una reducción a problemas de salud en el consumidor. Existe una gran variedad de metodologías de conservación que se han desarrollado. Desafortunadamente, la mayoría de ellas conllevan alteraciones estructurales, nutricionales o sensoriales indeseables, sobre todo aquellas que implican alteraciones en la temperatura de la carne o sus productos. En años recientes se ha puesto especial atención a metodologías de conservación no térmicas (Irradiación, luz ultravioleta, ultrasonido, campo de pulsos eléctricos, altas presiones hidrostáticas, antimicrobianos naturales y tecnología Hurdle), considerando a estas como una alternativa excelente, dado que no afectan la calidad del alimento. Este documento es una revisión de las metodologías no térmicas de procesamiento comúnmente aplicadas a productos cárnicos, las nuevas tendencias, así como la combinación de varias tecnologías para su implementación en el futuro.

DOI: https://doi.org/10.54167/tecnociencia.v15i2.829

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdollahzadeh, E., M. Rezaei, and H. Hosseini. 2014. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 35:177–183. https://doi.org/10.1016/J.FOODCONT.2013.07.004

Aguilar, C., J. Serna-Jiménez, E. Benitez, V. Valencia, O. Ochoa, and L. I. Sotelo. 2021. Influence of high power ultrasound on natural microflora, pathogen and lactic acid bacteria in a raw meat emulsion. Ultrasonics Sonochemistry 72:105415. https://doi.org/10.1016/j.ultsonch.2020.105415

Alarcon-Rojo, A. D., L. M. Carrillo-Lopez, R. Reyes-Villagrana, M. Huerta-Jiménez, and I. A. Garcia-Galicia. 2019. Ultrasound and meat quality: A Review. Ultrasonics Sonochemistry 55:369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016

Almanza-Rubio, J. L., N. Gutiérrez-Méndez, M. Y. Leal-Ramos, D. Sepulveda, and I. Salmeron. 2016. Modification of the textural and rheological properties of cream cheese using thermosonicated milk. Journal of Food Engineering 168:223–230. https://doi.org/10.1016/j.jfoodeng.2015.08.002

Andrade, M. J., L. Thorsen, A. Rodríguez, J. J. Córdoba, and L. Jespersen. 2014. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. International Journal of Food Microbiology 170:70–77. https://doi.org/10.1016/j.ijfoodmicro.2013.11.004

Angmo, K., A. Kumari, Monika, Savitri, and T. Chand Bhalla. 2016. Antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. Food Bioscience 13:26–31. http://dx.doi.org/10.1016%2Fj.fbio.2015.12.004

Arroyo, C., D. Lascorz, L. O’Dowd, F. Noci, J. Arimi, and J. G. Lyng. 2014. Effect of Pulsed Electric Field treatments at various stages during conditioning on quality attributes of beef longissimus thoracis et lumborum muscle. Meat Science 99:52–59. https://doi.org/10.1016/j.meatsci.2014.08.004

Arshad, M. S., J. H. Kwon, R. S. Ahmad, K. Ameer, S. Ahmad, and Y. Jo. 2020. Influence of E-beam irradiation on microbiological and physicochemical properties and fatty acid profile of frozen duck meat. Food Sci. Nutr. 8:1020–1029. http://doi.org/10.1002/fsn3.1386.

Aymerich, T., P. A. Picouet, and J. M. Monfort. 2008. Decontamination technologies for meat products. Meat Science 78:114–129. https://doi.org/10.1016/j.meatsci.2007.07.007

Baños, A., S. Ananou, M. Martínez-Bueno, A. Gálvez, M. Maqueda, and E. Valdivia. 2012. Prevention of spoilage by enterocin AS-48 combined with chemical preservatives, under vacuum, or modified atmosphere in a cooked ham model. Food Control 24:15–22. http://dx.doi.org/10.1016%2Fj.foodcont.2011.08.001

Barekat, S., and N. Soltanizadeh. 2017. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innovative Food Science & Emerging Technologies 39:223–229. http://dx.doi.org/10.1016/j.ifset.2016.12.009

Bastarrachea, L. J., M. Walsh, S. P. Wrenn, and R. V. Tikekar. 2017. Enhanced antimicrobial effect of ultrasound by the food colorant Erythrosin B. Food Research International 100:344–351. https://doi.org/10.1016/j.foodres.2017.07.012

Benedito, J., J. A. Carcel, C. Rossello, and A. Mulet. 2001. Composition assessment of raw meat mixtures using ultrasonics. Meat Science 57:365–370. https://doi.org/10.1016/s0309-1740(00)00113-3

Black, E. P., P. Setlow, A. D. Hocking, C. M. Stewart, A. L. Kelly, and D. G. Hoover. 2007. Response of Spores to High-Pressure Processing. Compr. Rev. Food Sci. Food Saf. 6:103–119. https://doi.org/10.1111/j.1541-4337.2007.00021.x

Bolumar, T., V. Orlien, A. Sikes, K. Aganovic, K. H. Bak, C. Guyon, A. S. Stübler, M. de Lamballerie, C. Hertel, and D. A. Brüggemann. 2021. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 20:332–368. http://doi.org/10.1111/1541-4337.12670.

Buchmann, L., and A. Mathys. 2019. Perspective on Pulsed Electric Field Treatment in the Bio-based Industry. Front. Bioeng. Biotechnol. 7:265. http://doi.org/10.3389/fbioe.2019.00265.

Al Bsoul, A., J. P. Magnin, N. Commenges-Bernole, N. Gondrexon, J. Willison, and C. Petrier. 2010. Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1). Ultrasonics Sonochemistry 17:106–110. https://doi.org/10.1016/j.ultsonch.2009.04.005

Cameron, M., L. D. McMaster, and T. J. Britz. 2008. Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry 15:960–964. https://doi.org/10.1016/j.ultsonch.2008.02.012

Caraveo, O., A. D. Alarcon-Rojo, A. Renteria, E. Santellano, and L. Paniwnyk. 2015. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. Journal of the Science of Food and Agriculture 95:2487–2493. https://doi.org/10.1002/jsfa.6979

Carrillo-Lopez, L. M., A. D. Alarcon-Rojo, L. Luna-Rodriguez, and R. Reyes-Villagrana. 2017. Modification of Food Systems by Ultrasound. Journal of Food Quality 2017:1–12. https://doi.org/10.1155/2017/5794931

Castellano, P., C. Belfiore, S. Fadda, and G. Vignolo. 2008. A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science 79:483–499. https://doi.org/10.1016/j.meatsci.2007.10.009

Chang, H.-J., Q. Wang, C.-H. Tang, and G.-H. Zhou. 2015. Effects of Ultrasound Treatment on Connective Tissue Collagen and Meat Quality of Beef Semitendinosus Muscle. Journal of Food Quality 38:256–267. http://dx.doi.org/10.1111/jfq.12141

Chang, H. J., X. L. Xu, G. H. Zhou, C. B. Li, and M. Huang. 2012. Effects of Characteristics Changes of Collagen on Meat Physicochemical Properties of Beef Semitendinosus Muscle during Ultrasonic Processing. Food and Bioprocess Technology 5:285–297. https://doi.org/10.1007/s11947-009-0269-9

Chantarasataporn, P., P. Tepkasikul, Y. Kingcha, R. Yoksan, R. Pichyangkura, W. Visessanguan, and S. Chirachanchai. 2014. Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chemistry 159:463–470. https://doi.org/10.1016/j.foodchem.2014.03.019

Chawla, S. P., and R. Chander. 2004. Microbiological safety of shelf-stable meat products prepared by employing hurdle technology. Food Control 15:559–563. http://dx.doi.org/10.1016/j.foodcont.2003.09.001

Chen, C., X. Chen, M. Jiang, X. Rui, W. Li, and M. Dong. 2014. A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control 42:116–124. http://dx.doi.org/10.1016/j.foodcont.2014.01.031

Coll Cardenas, F. J., and D. F. Olivera. 2016. Texture Changes in Meat During Storage. Elsevier, pp. https://doi.org/10.1016/B978-0-08-100596-5.03294-7

Corona, E., J. V. Garcia-perez, T. E. G. Alvarez-arenas, N. Watson, M. J. W. W. Povey, J. Benedito, T. E. Gomez Alvarez-Arenas, N. Watson, M. J. W. W. Povey, and J. Benedito. 2013a. Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering 119:464–470. http://dx.doi.org/10.1016/j.jfoodeng.2013.06.023

Corona, E., J. V García-Pérez, A. Mulet, and J. Benedito. 2013b. Ultrasonic assessment of textural changes in vacuum packaged sliced Iberian ham induced by high pressure treatment or cold storage. Meat Science 95:389–395. https://doi.org/10.1016/j.meatsci.2013.05.008

Daher, D., S. Le Gourrierec, and C. Pérez-Lamela. 2017. Effect of high pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agric. 7:1–18. http://doi.org/10.3390/agriculture7090072.

Diaz-Almanza, S., I. A. García-Galicia, A. L. Rentería-Monterrubio, and R. A. Reyes-Villagrana. 2021. Analysis of the simultaneous measurement of acoustic phase velocity and stress-strain relationship in beef: An approach to Young’s modulus. Applied Acoustics 182:108237. https://doi.org/10.1016/j.apacoust.2021.108237

Diaz‐Almanza, S., R. Reyes‐Villagrana, A. D. Alarcon‐Rojo, M. Huerta‐Jimenez, L. M. Carrillo‐Lopez, C. Estepp, J. Urbina‐Perez, and I. A. Garcia‐Galicia. 2019. Time matters when ultrasonicating beef: The best time for tenderness is not the best for reducing microbial counts. Journal of Food Process Engineering 42. http://dx.doi.org/10.1111/jfpe.13210

Di Gioia, D., G. Mazzola, I. Nikodinoska, I. Aloisio, T. Langerholc, M. Rossi, S. Raimondi, B. Melero, and J. Rovira. 2016. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. International Journal of Food Microbiology 235:53–59. https://doi.org/10.1016/j.ijfoodmicro.2016.06.019

Dolan, H. L., L. J. Bastarrachea, and R. V. Tikekar. 2018. Inactivation of Listeria innocua by a combined treatment of low-frequency ultrasound and zinc oxide. LWT - Food Science and Technology 88:146–151. https://doi.org/10.1016/j.lwt.2017.10.008

Evelyn, and F. V. M. Silva. 2018. Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone. Journal of Food Engineering 222:292–297. https://doi.org/10.1016/j.jfoodeng.2017.11.037

Fortin, A., A. K. W. Tong, and W. M. Robertson. 2004. Evaluation of three ultrasound instruments, CVT-2, UltraFom 300 and AutoFom for predicting salable meat yield and weight of lean in the primals of pork carcasses. Meat Science 68:537–49. https://doi.org/10.1016/j.meatsci.2004.05.006

Fulladosa, E., M. De Prados, J. V García-Perez, J. Benedito, I. Muñoz, J. Arnau, and P. Gou. 2015. X-ray absorptiometry and ultrasound technologies for non-destructive compositional analysis of dry-cured ham. Journal of Food Engineering 155:62–68. http://dx.doi.org/10.1016/j.jfoodeng.2015.01.015

Gambuteanu, C., and P. Alexe. 2013. Effects of ultrasound assisted thawing on microbiological, chemical and technological properties of unpackaged pork Longissimus dorsi. Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technology 37:98–107. https://bit.ly/3w8I9gz

Gao, S., G. D. Lewis, M. Ashokkumar, and Y. Hemar. 2014a. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrasonics Sonochemistry 21:446–453. https://doi.org/10.1016/j.ultsonch.2013.06.006

Gao, S., Y. Hemar, M. Ashokkumar, S. Paturel, and G. D. Lewis. 2014b. Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research 60:93–104. https://doi.org/10.1016/j.watres.2014.04.038

García-Pérez, J. V., M. De Prados, G. Martínez-Escrivá, R. González, A. Mulet, and J. Benedito. 2015. Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products. Physics Procedia 70:837–840. http://dx.doi.org/10.1016/j.phpro.2015.08.171

Giménez, B., N. Graiver, A. Califano, and N. Zaritzky. 2015. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure. Meat Science 100:179–188. https://doi.org/10.1016/j.meatsci.2014.10.017

Gómez, B., P. E. S. Munekata, M. Gavahian, F. J. Barba, F. J. Martí-Quijal, T. Bolumar, P. C. B. Campagnol, I. Tomasevic, and J. M. Lorenzo. 2019. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 123:95–105. http://doi.org/10.1016/j.foodres.2019.04.047.

Gómez-Sala, B., C. Herranz, B. Díaz-Freitas, P. E. Hernández, A. Sala, and L. M. Cintas. 2016. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology 223:41–49. https://doi.org/10.1016/j.ijfoodmicro.2016.02.005

Got, F., J. Culioli, P. Berge, X. Vignon, T. Astruc, J. M. Quideau, and M. Lethiecq. 1999. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Science 51:35–42. https://doi.org/10.1016/s0309-1740(98)00094-1

Ham, Y. K., H. W. Kim, K. E. Hwang, D. H. Song, Y. J. Kim, Y. S. Choi, B. S. Song, J. H. Park, and C. J. Kim. 2017. Effects of irradiation source and dose level on quality characteristics of processed meat products. Radiation Physics and Chemistry 130:259–264. https://doi.org/10.1016/j.radphyschem.2016.09.010

Haumschild, D. J., and D. L. Carlson. 1983. An ultrasonic Bragg scattering technique for the quantitative characterization of marbling in beef. Ultrasonics 21:226–233. https://core.ac.uk/download/pdf/38918548.pdf

Hereu, A., S. Bover-Cid, M. Garriga, and T. Aymerich. 2012. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. International Journal of Food Microbiology 154:107–112. https://doi.org/10.1016/j.ijfoodmicro.2011.02.027

Hernández, B., C. Sáenz Gamasa, J. M. Diñeiro Rubial, and C. Alberdi Odriozola. 2019. CIELAB color paths during meat shelf life. Meat Science 157:107889. https://doi.org/10.1016/j.meatsci.2019.107889

Huang, E., G. S. Mittal, and M. W. Griffiths. 2006. Inactivation of Salmonella enteritidis in Liquid Whole Egg using Combination Treatments of Pulsed Electric Field, High Pressure and Ultrasound. Biosystems Engineering 94:403–413. https://doi.org/10.1016/j.biosystemseng.2006.03.008

Hugo, C. J., and A. Hugo. 2015. Current trends in natural preservatives for fresh sausage products. Trends in Food Science and Technology 45:12–23. http://dx.doi.org/10.1016/j.tifs.2015.05.003

Huq, T., K. D. Vu, B. Riedl, J. Bouchard, and M. Lacroix. 2015. Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology 46:507–514. https://doi.org/10.1016/j.fm.2014.09.013

Hygreeva, D., and M. C. Pandey. 2016. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology - A review. Trends in Food Science & Technology 54:175–185. https://doi.org/10.1016/j.tifs.2016.06.002

IFST. 2015. The Use of Irradiation for Food Quality and Safety. Information statement. Institute of Food Science and Technology. https://www.ifst.org/resources/information-statements/food-irradiation

Inguglia, E. S., B. K. Tiwari, J. P. Kerry, and C. M. Burgess. 2018. Effects of high intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria innocua with salt and salt replacers. Ultrasonics Sonochemistry 48:492–498. https://doi.org/10.1016/j.ultsonch.2018.05.007

Jayasooriya, S. D., P. J. Torley, B. R. D’Arcy, and B. R. Bhandari. 2007. Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Science 75:628–639. https://doi.org/10.1016/j.meatsci.2006.09.010

Jones, R. J., H. M. Hussein, M. Zagorec, G. Brightwell, and J. R. Tagg. 2008. Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiology 25:228–234. https://doi.org/10.1016/j.fm.2007.11.001

Kang, D. cheng, X. qin Gao, Q. feng Ge, G. hong Zhou, and W. gang Zhang. 2017. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrasonics Sonochemistry 38:317–325. https://doi.org/10.1016/j.ultsonch.2017.03.026

Kassem, A., J. Meade, K. McGill, C. Walsh, J. Gibbons, J. Lyng, and P. Whyte. 2018. An investigation of high intensity ultrasonication and chemical immersion treatments on Campylobacter jejuni and spoilage bacteria in chicken. Innovative Food Science and Emerging Technologies 45:298–305. http://dx.doi.org/10.1016/j.ifset.2017.10.015

Keklik, N. M., Krishnamurthy, K., & Demirci, A. 2012. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial Decontamination in the Food Industry: Novel Methods and Applications (pp. 344–369). https://doi.org/10.1533/9780857095756.2.344

Kerhervé, S. O., R. M. Guillermic, A. Strybulevych, D. W. Hatcher, M. G. Scanlon, and J. H. Page. 2019. Online non-contact quality control of noodle dough using ultrasound. Food Control 104:349–357. http://doi.org/10.1016/j.foodcont.2019.04.024

Khan, I., C. N. Tango, S. Miskeen, B. H. Lee, and D.-H. Oh. 2016. Hurdle technology: A novel approach for enhanced food quality and safety-A review. Food Control 73:1426–1444. http://dx.doi.org/10.1016%2Fj.foodcont.2016.11.010

Kordowska-Wiater, M., and D. M. Stasiak. 2011. Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull Vet Inst Pulawy 55:207–210. https://bit.ly/3MzOSWV

Kundu, D., A. Gill, C. Lui, N. Goswami, and R. Holley. 2014. Use of low dose e-beam irradiation to reduce E. coli O157: H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat Science 96:413–418. https://doi.org/10.1016/j.meatsci.2013.07.034

Lemay, M. J., J. Choquette, P. J. Delaquis, C. Gariépy, N. Rodrigue, and L. Saucier. 2002. Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Microbiology 78:217–226. https://doi.org/10.1016/s0168-1605(02)00014-4

Li, S., D. Kundu, and R. A. Holley. 2015. Use of lactic acid with electron beam irradiation for control of Escherichia coli O157:H7, non-O157 VTEC E. coli, and Salmonella serovars on fresh and frozen beef. Food Microbiol. 46:34–39. https://doi.org/10.1016/j.fm.2014.06.018.

Li, J., Y. Suo, X. Liao, J. Ahn, D. Liu, S. Chen, X. Ye, and T. Ding. 2017. Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat. Ultrasonics Sonochemistry 39:101–110. https://doi.org/10.1016/j.ultsonch.2017.04.019

Liao, X., J. Li, Y. Suo, S. Chen, X. Ye, D. Liu, and T. Ding. 2018. Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness 7:102–109. https://doi.org/10.1016/j.fshw.2018.01.002

Llull, P., S. Simal, A. Femenia, J. Benedito, and C. Rosselló. 2002. The use of ultrasound velocity measurement to evaluate the textural properties of sobrassada from Mallorca. Journal of Food Engineering 52:323–330. http://dx.doi.org/10.1016/S0260-8774(01)00122-4

Loconsole, D., and P. Santamaria. 2021. UV lighting in horticulture: A sustainable tool for improving production quality and food safety. Horticulturae. 7:1–13. http://doi.org/10.3390/horticulturae7010009.

McClements, D. J., and G. Sundaram. 1997. Ultrasonic Characterization of Foods and Drinks: Principles, Methods, and Applications. Critical Reviews in Food Science and Nutrition 37–41. https://doi.org/10.1080/10408399709527766

Morild, R. K., P. Christiansen, A. H. Sørensen, U. Nonboe, and S. Aabo. 2011. Inactivation of pathogens on pork by steam-ultrasound treatment. Journal of Food Protection 74:769–775. https://doi.org/10.4315/0362-028x.jfp-10-338

Modugno, C., C. Peltier, H. Simonin, L. Dujourdy, F. Capitani, C. Sandt, and J. M. Perrier-Cornet. 2020. Understanding the Effects of High Pressure on Bacterial Spores Using Synchrotron Infrared Spectroscopy. Front. Microbiol. 10:1–10. http://doi.org/10.3389/fmicb.2019.03122.

Musavian, H. S., N. H. Krebs, U. Nonboe, J. E. L. Corry, and G. Purnell. 2014. Combined steam and ultrasound treatment of broilers at slaughter: A promising intervention to significantly reduce numbers of naturally occurring campylobacters on carcasses. International Journal of Food Microbiology 176:23–28. https://doi.org/10.1016/j.ijfoodmicro.2014.02.001

Nowak, A., A. Czyzowska, M. Efenberger, and L. Krala. 2016. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiology 59:142–149. https://doi.org/10.1016/j.fm.2016.06.004

Ozuna, C., A. Puig, J. V García-Pérez, A. Mulet, and J. A. Cárcel. 2013. Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering 119:84–93. http://dx.doi.org/10.1016/j.jfoodeng.2013.05.016

Paskeviciute, E., I. Buchovec, and Z. Luksiene. 2011. High-Power Pulsed Light For Decontamination Of Chicken From Food Pathogens: A Study On Antimicrobial Efficiency And Organoleptic Properties. Journal of Food Safety 31:61–68. http://dx.doi.org/10.1111/j.1745-4565.2010.00267.x

Peña-Gonzalez, E., A. D. Alarcon-Rojo, I. Garcia-Galicia, L. Carrillo-Lopez, and M. Huerta-Jimenez. 2019. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrasonics Sonochemistry 53:134–141. https://doi.org/10.1016/j.ultsonch.2018.12.045

Peña-González, E. M., A. D. Alarcón-Rojo, A. Rentería, I. García, E. Santellano, A. Quintero, and L. Luna. 2017. Quality and sensory profile of ultrasound-treated beef. Italian Journal of Food Science 29:463–475. https://doi.org/10.14674/1120-1770/ijfs.v604

Pinton, M. B., L. P. Correa, M. M. X. Facchi, R. T. Heck, Y. S. V. Leães, A. J. Cichoski, J. M. Lorenzo, M. dos Santos, M. A. R. Pollonio, and P. C. B. Campagnol. 2019. Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Science 152:88–95. https://doi.org/10.1016/j.meatsci.2019.02.010

De Prados, M., J. V Garcia-Perez, and J. Benedito. 2016. Ultrasonic characterization and online monitoring of pork meat dry salting process. Food Control 60:646–655. http://dx.doi.org/10.1016/j.foodcont.2015.09.009

Reyes, J. E., G. Tabilo-Munizaga, M. Pérez-Won, D. Maluenda, and T. Roco. 2015. Effect of high hydrostatic pressure (HHP) treatments on microbiological shelf-life of chilled Chilean jack mackerel (Trachurus murphyi). Innovative Food Science and Emerging Technologies 29:107–112. https://bit.ly/3liEyXb

Ricciardi, E. F., V. Lacivita, A. Conte, E. Chiaravalle, A. V. Zambrini, and M. A. Del Nobile. 2019. X-ray irradiation as a valid technique to prolong food shelf life: The case of ricotta cheese. International Dairy Journal 99:104547. https://doi.org/10.1016/j.idairyj.2019.104547

Roberts, R. T. T. 1991. Sound for processing food. Nutrition & Food Science 91:17–18.

Salazar, F. A., S. Yildiz, D. Leyva, M. Soto-Caballero, J. Welti-Chanes, P. S. Anubhav, M. Lavilla, and Z. Escobedo-Avellaneda. 2021. HHP Influence on Food Quality and Bioactive Compounds: A Review of the Last Decade. Innovative Food Processing Technologies 87–111. https://doi.org/10.1016/b978-0-08-100596-5.22984-3

Sikes, A. L., R. Mawson, J. Stark, and R. Warner. 2014. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrasonics Sonochemistry 21:2138–2143. https://doi.org/10.1016/j.ultsonch.2014.03.008

Silva, H. L. A., M. P. Costa, B. S. Frasao, E. F. M. Mesquita, S. C. R. P. Mello, C. A. Conte-Junior, R. M. Franco, and Z. B. Miranda. 2015. Efficacy of Ultraviolet-C Light to Eliminate Staphylococcus Aureus on Precooked Shredded Bullfrog Back Meat. Journal of Food Safety 35:318–323. https://doi.org/10.1111/jfs.12178

Smaoui, S., A. Ben Hsouna, A. Lahmar, K. Ennouri, A. Mtibaa-Chakchouk, I. Sellem, S. Najah, M. Bouaziz, and L. Mellouli. 2016. Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Science 117:196–204. https://doi.org/10.1016/j.meatsci.2016.03.006

Sommers, C. H., J. J. Scullen J, and J. E. Sites. 2010. Inactivation of foodborne pathogens on frankfurters using ultraviolet light and gras antimicrobials. Journal of Food Safety 30:666–678. https://doi.org/10.1111/j.1745-4565.2010.00232.x

Stadnik, J., and Z. J. Dolatowski. 2011. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). European Food Research and Technology 233:553–559. http://dx.doi.org/10.1007/s00217-011-1550-5

Subramanian, J. H., L. D. Kagliwal, and R. S. Singhal. 2014. Permitted Preservatives – Nitrites and Nitrates. In Encyclopedia of Food Microbiology (92–98 pp). Second Edition. Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00267-6.

Suklim, K., G. J. Flick, and K. Vichitphan. 2014. Effects of gamma irradiation on the physical and sensory quality and inactivation of Listeria monocytogenes in blue swimming crab meat (Portunas pelagicus). Radiation Physics and Chemistry 103:22–26. http://dx.doi.org/10.1016/j.radphyschem.2014.05.009

Suwandy, V., A. Carne, R. van de Ven, A. E. D. A. Bekhit, and D. L. Hopkins. 2015. Effect of Repeated Pulsed Electric Field Treatment on the Quality of Cold-Boned Beef Loins and Topsides. Food Bioprocess Technol. 8:1218–1228. http://doi.org/10.1007/s11947-015-1485-0.

Szerman, N., Y. Barrio, B. Schroeder, P. Martinez, A. M. Sancho, C. Sanow, and S. R. Vaudagna. 2011. Effect of high hydrostatic pressure treatments on physicochemical properties, microbial quality and sensory attributes of beef carpaccio. Procedia Food Science 1:854–861. http://dx.doi.org/10.1016/j.profoo.2011.09.129

Tapp, W. N., J. W. S. Yancey, and J. K. Apple. 2011. How is the instrumental color of meat measured? Meat Science 89:1–5. https://doi.org/10.1016/j.meatsci.2010.11.021

Tremarin, A., T. R. S. Brandão, and C. L. M. Silva. 2017. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT - Food Science and Technology 78:138–142. https://doi.org/10.1016/j.lwt.2016.12.039

Turantaş, F., G. B. Kılıç, and B. Kılıç. 2015. Ultrasound in the meat industry: General applications and decontamination efficiency. International Journal of Food Microbiology 198:59–69. https://doi.org/10.1016/j.ijfoodmicro.2014.12.026

Vermeiren, L., F. Devlieghere, and J. Debevere. 2004. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. International Journal of Food Microbiology 96:149–164. https://doi.org/10.1016/j.ijfoodmicro.2004.03.016

Visy, A., G. Jónás, D. Szakos, Z. Horváth-Mezőfi, K. I. Hidas, A. Barkó, and L. Friedrich. 2021. Evaluation of ultrasound and microbubbles effect on pork meat during brining process. Ultrasonics Sonochemistry 75:105589. https://doi.org/10.1016/j.ultsonch.2021.105589

Wan, Y., H. Wang, W. Wang, L. Zan, and J. Zhu. 2018. Effect of Ultrasound and Calcium Chloride on the Ultrastructure and the Warner-Bratzler Shear Force Value of Beef Shank Muscle Fibers. Food Biophysics 13:396–403. https://doi.org/10.1007/s11483-018-9545-4

Wang, A., D. Kang, W. Zhang, C. Zhang, Y. Zou, and G. Zhou. 2018. Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry 245:724–730. https://doi.org/10.1016/j.foodchem.2017.12.003

Weiss, J., M. Loeffler, and N. Terjung. 2015. The antimicrobial paradox: why preservatives loose activity in foods. Current Opinion in Food Science 4:69–75. https://doi.org/10.1016/j.cofs.2015.05.008

WHO. 2016. Ionizing radiation, health effects and protective measures. Ioniz. radiation, Heal. Eff. Prot. Meas. https://bit.ly/3wuClwP

Woldemariam, H. W., and S. A. Emire. 2019. High Pressure Processing of Foods for Microbial and Mycotoxins Control: current trends and future prospects. Cogent Food Agric. 5. http://doi.org/10.1080/23311932.2019.1622184.

Yépez, A., C. Luz, G. Meca, G. Vignolo, J. Mañes, and R. Aznar. 2017. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control 78:393–400. http://dx.doi.org/10.1016/j.foodcont.2017.03.009

Zhang, H., and G. S. Mittal. 2008. Effects of High-Pressure Processing (HPP) on Bacterial Spores: An Overview. Food Rev. Int. 24:330–351. http://doi.org/10.1080/87559120802089290.

Zou, Y., W. Zhang, D. Kang, and G. Zhou. 2018. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science and Technology 53:828–836. https://doi.org/10.1111/ijfs.13659

Zupanc, M., Ž. Pandur, T. Stepišnik Perdih, D. Stopar, M. Petkovšek, and M. Dular. 2019. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry 57:147–165. https://doi.org/10.1016/j.ultsonch.2019.05.009

Descargas

Publicado

2021-08-24

Cómo citar

Díaz-Almanza, S., Alarcón-Rojo, A. D., & García-Galicia, I. A. (2021). Tecnologías emergentes no térmicas para la conservación de carne fresca y productos cárnicos : Non-thermal methods for the preservation of fresh meat and meat products. TECNOCIENCIA Chihuahua, 15(2), e 829. https://doi.org/10.54167/tecnociencia.v15i2.829
Metrics
Vistas/Descargas
  • Resumen
    1470
  • PDF
    543
  • HTML
    29

Métrica

Artículos más leídos del mismo autor/a