Revisión de las características de los transportadores ABC involucrados en patogénesis fúngica
Review of characteristics of ABC transporters involved in fungal pathogenesis
DOI:
https://doi.org/10.54167/tch.v4i2.716Palabras clave:
Transportadores ABC, factores de patogenicidad, hongosResumen
Los transportadores ABC son proteínas con una amplia distribución entre los organismos procariontes y eucariontes; exhiben un mecanismo de transporte dependiente de energía, ya que necesitan de la unión e hidrólisis del ATP para realizar su función. En hongos, a los transportadores ABC se les han asignado múltiples funciones, entre ellas destaca su reciente asignación como factores de patogenicidad de hongos de importancia agronómica, tal es el caso de Magnaporthe grisea, Botrytis cinerea, Gibberella pulicaris, Fusarium culmorum y Mycosphaerella graminicola. En estos fitopatógenos, los genes ABC ortólogos que participan en la virulencia tienen un alto grado de conservación. No obstante, hasta el momento no existe evidencia sobre cómo estos trasportadores ABC se especializaron con función en patogénesis. En este trabajo se resumen algunos de los hallazgos que se han realizado en la estructura de las proteínas transportadoras tipo ABC presuntamente involucradas en la patogenicidad de hongos fitopatógenos.
Abstract
ABC transporters are proteins with broad distribution in prokaryotic and eukaryotic kingdoms; these proteins bind and use the energy of ATP to transport substances across membranes. In fungi, the ABC transporters have been involved in multiple functions, including the new role of pathogenicity factors in fungi with agronomic importance such as Magnaporthe grisea, Botrytis cinerea, Gibberella pulicaris, Fusarium culmorum and Mycosphaerella graminicola. There is a high conservation of nucleotide and amino acid sequence levels in orthologous of virulence-related ABC transporters. However, so far, there is no evidence about how these fungal ABC transporters became specialized in pathogenesis. This review summarizes some of the relevant findings about the structure of ABC transporter involved in the infective process of pathogenic fungi.
Keywords: ABC transporters, pathogenicity factors, fungi.
Descargas
Citas
Altenberg, G. 2003. The engine of ABC proteins. New Physiology Science 18: 191-195. https://doi.org/10.1152/nips.01445.2003
Anjard, C. & W. F. Loomis. 2002. Evolutionary analysis of ABC transporters of Dictyostelium discoideum. Eukaryote Cell 1(4):643-652. https://doi.org/10.1128/ec.1.4.643-652.2002
Coleman, J.J. & E. Mylonakis. 2009. Efflux in Fungi: La Piece de Resistance. PLoS Pathogens 5(6): 1-7. https://doi.org/10.1371%2Fjournal.ppat.1000486
Dawson, R., K. Hollenstein & K. Locher. 2007. Uptake or extrusion: crystal structures of full ABC transporter suggest a common mechanism. Molecular Microbiology 65(2): 250- 257. https://doi.org/10.1111/j.1365-2958.2007.05792.x
De Hertogh, B., F. Hancy, A. Goffeau & P. V. Baret. 2006. Emergence of species- specific transporters during evolution of the Hemiascomycetes phylum. Genetics 172(2): 771-781. https://doi.org/10.1534/genetics.105.046813
De Waard, M., A. Andrade, K. Hayashi, H. Schoonbeek, I. Stergiopoulos & L. Zwier. 2006. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Review Pesticide Manager Science 62(3): 195-207. https://doi.org/10.1002/ps.1150
Fleibner, A., C. Sopalla & K. M. Weltring. 2002. An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Molecular Plant Mycology Interaction 15(2): 102-108. https://doi.org/10.1094/MPMI.2002.15.2.102
Gbelska, Y., J. Krijger & K. D. Breunig. 2006. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Research 6(3): 345-355. https://doi.org/10.1111/j.1567-1364.2006.00058.x
Higgings, C. F. 1998. ABC transporter: from microorganism to man. Annual Review of Cell Biology 8: 67-113. https://doi.org/10.1146/annurev.cb.08.110192.000435
Hollenstein, C., D. C. Frei & K. Locher. 2007. Structure of an ABC transporter in complex with its binding. Nature 446 (7132): 213-216. https://doi.org/10.1038/nature05626
Jones, P. M. & A. M. George. 1999. Subunits interactions in ABC transporter: toward a functional or architecture. FEMS Microbiology Letter 179(2): 187-202. https://doi.org/10.1111/j.1574-6968.1999.tb08727.x
Jones, P. M. & A. M. George. 2002. Mechanism of ABC transporter: a molecular dynamics simulation of a well characterized nucleotide binding subunit. Proceedings of the National Academy of Sciences U.S.A. 99(2): 12639-12644. https://doi.org/10.1073/pnas.152439599
Jones, P. M. & A. M. George. 2004. The ABC transporter structure and mechanism: perspectives on recent research. Cellular and Molecular Life Sciences 61(6): 682-699. https://doi.org/10.1007/s00018-003-3336-9
Lee, J., I. L. Urbastch, A. E. Senior & S. Wilkens. 2002. Projection structure of P-glicoprotein by electron microscopy. Evidence for a closed conformation of the nucleotide binding domains. Journal of Biological Chemistry 277(42): 40125-10131. https://doi.org/10.1074/jbc.M206871200
Gang, L., J. Westbrooks, A. Davidson & J. Chen. 2005. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proceedings of the National Academy of Sciences, U.S.A. 102(50): 17969-17974. https://doi.org/10.1073/pnas.0506039102
Lee, Y.J., H. Hamamoto, R. Nakaune, O. Nawata, Y. Makizumi, K.Akutsu & T. Hibi. 2001. Distribution of the consensus sequences of ABC transporter gene among several taxonomically distinct phytopathogenic fungi. Journal of General Plant Pathology 67:106-110. https://doi.org/10.1007/PL00012995
Moody, J., L. Millen, D. Binns & T. Philps. 2002. Cooperative ATP dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP binding cassette transport. Journal of Biological Chemistry 277(24): 21111-21114. https://doi.org/10.1074/jbc.c200228200
Nikaido, H. 2002. ¿How are the ABC transporters energized?. Proceedings of the National Academy of Sciences U.S.A. 99(15):9606-9610. https://doi.org/10.1073/pnas.162375699
Oswald, C., L. B. Hollan & T. Schmitt. 2006. The motor domains of ABC transporter. ¿What can structures tell us?. Archives of Pharmacology 372(6): 385-399. https://doi.org/10.1007/s00210-005-0031-4
Rank, G. H. & B. Hansen. 1973. Single nuclear gene inherited cross resistance and collateral sensitivity to 17 inhibitors of mitochondrial function in S. cerevisiae. Molecular and General Genetics 126(2): 93-102. https://doi.org/10.1007/bf00330986
Saier Jr., M., M. Sliwinski, S. Pao, R. Skurray & H. Nikaido. 1998. Evolutionary origins of multidrug and drug specific pumps in bacteria. The FASEB Journal 12(3): 265-274. https://doi.org/10.1096/fasebj.12.3.265
Saurin, W., M. Hofnung & E. Dassa. 1999. Getting in or out: early segregation between importers and exporters in the evolution of ATP-Binding Cassette (ABC) transporters. Journal of Molecular Evolution 48(1): 22-41. https://doi.org/10.1007/pl00006442
Schneider, E. & S. Hunke. 1998. ATP binding cassette (ABC) transport system: functional and structural aspects of the ATP hydrolyzing subunits domains. FEMS Mycrobiology Review 22(1): 1-20. https://doi.org/10.1111/j.1574-6976.1998.tb00358.x
Senior, A.E., M. K. Al Shawi & I.L. Urbastch. 1995. The catalytic cycle of P-glycoprotein. FEBS Letter 377(3): 285-289. https://doi.org/10.1016/0014-5793(95)01345-8
Seret, M., J. F. Diffels, A. Goffeau & P. Baret. 2009. Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts. BMC Genomics 10: 459. https://doi.org/10.1186/1471-2164-10-459
Schoonbeek, H., G. Del Sorbo & M. A. De Waard. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions 14(4): 562- 571. https://doi.org/10.1094/MPMI.2001.14.4.562
Skov, J., M. Lemmens & H. Giese. 2004. Role of a Fusarium culmorum ABC transporter (FcABC1) during infection of wheat and barley. Physiological and Molecular Plant
Pathology 64(5): 245–254. https://doi.org/10.1016/j.pmpp.2004.09.005
Stergiopoulos, I., L. Zwier & M. De Waard. 2003. The ABC Transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Molecular Plant-Microbe Interactions 16(8): 689-698. https://doi.org/10.1094/mpmi.2003.16.8.689
Stergiopoulos, I., M. Groenewald, M. Staats, P. Lindhout, P. W. Crous & P. J. G. M. De Wit. 2007. Mating-type genes and the genetic structure of a world-wide collection of the tomato pathogen Cladosporium fulvum. Fungal Genetic and Biology 44(5): 415- 429. https://doi.org/10.1016/j.fgb.2006.11.004
Sukla, S., P. Saini, K. Smriti, S. Jha, S. V. Ambudkar & R. Prasad. 2003. Functional characterization of Candida albicans ABC transporter cdr1p. Eukaryotic Cell 2(6):1136-1375. https://doi.org/10.1128%2FEC.2.6.1361-1375.2003
Urban, M., T. Bhargava & J. E. Hamer. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO Journal 18(3): 512-521. https://doi.org/10.1093%2Femboj%2F18.3.512
Van der Does, C. & R. Tampé. 2004. How do ABC transporters drive transport?. Biological Chemistry 385(10): 927-933. https://doi.org/10.1515/bc.2004.121
Publicado
Cómo citar
-
Resumen1110
-
PDF604
-
HTML210