Biocombustibles: estrategias limpias para combatir la crisis energética

Biofuels: clean strategies to fight the energy crisis

Autores/as

  • Tania Siqueiros-Cendón Universidad Autónoma de Chihuahua
  • Nidia Paola Castillo-Vázquez Universidad Autónoma de Chihuahua
  • Quintín Rascón-Cruz Universidad Autónoma de Chihuahua

DOI:

https://doi.org/10.54167/tch.v5i2.695

Palabras clave:

Biocombustibles

Resumen

México se encuentra ante una eventual crisis energética debido a la reducción en sus reservas probadas del petróleo, lo que ha tenido como consecuencia un incremento en los precios de los combustibles. Además, la utilización de este hidrocarburo ha generado emisión de gases con efecto invernadero, contribuyendo al cambio climático. Para solucionar este problema se requiere desarrollar tecnologías alternativas que nos permitan sustituir los combustibles derivados del petróleo. Estos hechos hacen evidente la necesidad de utilizar fuentes alternas de energía. Los biocombustibles son recursos energéticos producidos por el ser humano a partir de materias generadas por seres vivos, a las cuales se les denomina “biomasa”. Esta segunda generación de biocombustibles plantea el uso de lignocelulosa, que es el polímero más abundante sobre la superficie del planeta; para lograrlo se requiere del desarrollo biotecnológico que permita la despolimerización efectiva de la biomasa vegetal.

Abstract

Mexico is facing a possible energy crisis due to the reduction in proven reserves of oil and consequently, it has resulted in the increase in fuel prices. To solve this problem it requires developing alternative technologies that allow us to replace fuels from petroleum. Besides that, the use of this fuel has generated greenhouse gases emissions, contributing to the climate change. These facts make clear the need for alternative energy sources. Biofuels are a type of fuel whose energy is derived from living organisms called “biomass” and produced by human beings. These second-generation biofuels require the use of lignocellulose that is the most abundant polymer on the surface of the planet, to get this, it is required the development of a biotechnology process that allows the effective depolymerization of plant biomass.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Álvarez-Maciel, C. 2009. Biocombustibles: desarrollo histórico-tecnológico, mercados actuales y comercio internacional. Economía Informa 359:63-89. http://www.economia.unam.mx/publicaciones/econinforma/pdfs/359/04carlosalvarez.pdf

Antizar-Ladislao, B. & J.L. Turión–Gómez. 2008. Second generation biofuels and local bioenergy systems. Biofuels, Bioproducts and Biorefining 2(5):455- 469. https://doi.org/10.1002/bbb.97

Cámara de Diputados del H. Congreso de la Unión. 2009. Reglamento de la ley de promoción y desarrollo de los bioenergéticos. Diario Oficial de la Federación del 18 de junio de 2009. https://www.diputados.gob.mx/LeyesBiblio/regley/Reg_LPDB.pdf

Carere, C.R., R. Sparling, N. Cicek & D.B. Levin. 2008. Third generation biofuels via direct cellulose fermentation. International Journal of Molecular Sciences 9(7):1342-1360. https://doi.org/10.3390/ijms9071342

Chandel, K. A., E.S. Chan, R. Rudravaram, M.L Narasu, V. Rao & P. Ravindra. 2007. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Reviews 2(1):14-32. https://doi.org/10.5897/BMBR2007.0002

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25(3):294- 06. https://doi.org/10.1016/j.biotechadv.2007.02.001

Erdei, B., Z. Barta, B. Sipos, K. Réczey, M. Galbe & G. Zacchi. 2010. Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels 3(16):1-9. https://doi.org/10.1186/1754-6834-3-16

Foust, T.F., A. Aden, A. Dutta & S. Phillips. 2009. An economic and environmental comparison of thermochemical lignocellulosic ethanol conversion processes. Cellulose 16(4):547–565. https://doi.org/10.1007/s10570-009-9317-x

Freudenberger, R. 2009. Alcohol fuel: a guide to small-scale ethanol: making and using ethanol as a renewable fuel. New Society Pub. ISBN 0865716269, 9780865716261.

Fujii, T., X. Fang, H. Inoue, K. Murakami & S. Sawayama. 2009. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels and Bioproducts 2(1):24-32. https://doi.org/10.1186/1754-6834-2-24

Gnansounou, E. & A. Dauriat. 2010. Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology 101(13):4980– 4991. https://doi.org/10.1016/j.biortech.2010.02.009

Guarnizo, A., P.N. Martínez & H.A. Valencia. 2009. Pretratamientos de la celulosa y biomasa para la sacarificación. Scientia et Technica 2(42): 284-289. https://doi.org/10.22517/23447214.2655

Hamelinck, C.N., G. Van-Hooijdonk & A.P.C. Faaij. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 28(4):384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

Havlik, P., U.A. Schneider, E. Schmid, H. Bottcher, S. Fritz, R. Skalský, K. Aoki, S. DeCara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Mosnier, T. Sauer & M. Obersteiner. 2010. Global land-use implications of first- and second-generation biofuel targets. Energy Policy 39(10):5690-5702. https://doi.org/10.1016/j.enpol.2010.03.030

Kootstra, A.M.J., H.H. Beeftink, E.L. Scott & J.P.M. Sanders. 2009. Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels and Bioproducts 2:31-45. https://doi.org/10.1186/1754-6834-2-31

Li, Y., M. Horsman, N. Wu, C.Q. Lan & N. Dubois-Calero. 2008. Biofuels from microalgae. Biotechnology Progress 24(4):815-820. https://doi.org/10.1021/bp070371k

Lynd, L.R., M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J.D. McMillan, J. Sheehan & C.E. Wyman. 2008. How biotech can transform biofuels. Nature Biotechnology 26(2):169–172. https://doi.org/10.1038/nbt0208-169

Maas, R., R.R. Bakke, A.R. Boersma, I. Bisschops, J.R. Pels, E. Jong, R.A. Weusthuis & H. Reith. 2008. Pilot-scale conversion of lime-treated wheat Straw into bioetanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion. Biotechnology for Biofuels and Bioproducts 1(1):1-13. https://doi.org/10.1186/1754-6834-1-14

Martínez, A.L., E. Ocaranza-Sánchez & E. López-López. 2009. Alternativas para la producción de biocombustibles en México. Ide@s CONCYTEG. 54:1234-1245.

Naik, S.N., V.V. Goud, P.K. Rout & A.K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable Sustainable Energy Review 14(2):578–597. https://doi.org/10.1016/j.rser.2009.10.003

Olofsson, K., M. Bertilsson & G. Lidén. 2008. A short review on SSF- an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels and Bioproducts 1(1):7. https://doi.org/10.1186/1754-6834-1-7

Saha, B.C., L.B. Iten, M.A. Cotta & Y.V. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry 40(12):3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

Sanders, J., E. Scott, R.A. Weusthuis & Mooibroek. 2007. Bio-refinery as the bio-inspired process to bulk chemicals. Macromolecular Bioscience 7(2):105-117. https://doi.org/10.1002/mabi.200600223

Sheenan, J. & M. Himmel. 1999. Enzymes, energy, and the environment: A strategic perspective on the U.S. department of energy’s research and development activities for bioethanol. Biotechnology Progress 15(5): 817-827. https://doi.org/10.1021/bp990110d

Sun, Y. & J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83(1): 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

Taherzadeh, M.J. & K. Karimi. 2007. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472-479. https://tinyurl.com/mr4p7h4n

Whetten, R. & R. Sederoffa. 1995. Lignin biosynthesis. Plant Cell 7:1001-1013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160901/pdf/071001.pdf

Yamada, R., N. Taniguchi, T. Tanaka, C. Ogino, H. Fukuda & A. Kondo. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels and Bioproducts 4(1):8-16. https://doi.org/10.1186/1754-6834-4-8

Yang, B. & C.E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining 2(1):26-40. https://doi.org/10.1002/bbb.49

Zheng, Y., Z. Pan & R. Zhang. 2009. Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering 2(3):51-68. https://www.ijabe.org/index.php/ijabe/article/view/168

Zhu, Z., N. Sathitsuksanoh, T. Vinzant, D.J. Schell, J.D. McMillan & Y.H.P. Zhang. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering 103(4):715-724. https://doi.org/10.1002/bit.22307

Descargas

Publicado

2020-11-03

Cómo citar

Siqueiros-Cendón, T., Castillo-Vázquez, N. P., & Rascón-Cruz, Q. (2020). Biocombustibles: estrategias limpias para combatir la crisis energética: Biofuels: clean strategies to fight the energy crisis. TECNOCIENCIA Chihuahua, 5(2), 61–66. https://doi.org/10.54167/tch.v5i2.695
Metrics
Vistas/Descargas
  • Resumen
    503
  • PDF
    245
  • HTML
    84

Número

Sección

El científico frente a la sociedad

Métrica

Artículos más leídos del mismo autor/a