Fosfatasa alcalina (E.C.3.1.3.1): bioquímica y aplicaciones en las ciencias biomédicas, ecológicas y alimentarias
Alkaline phosphatase (E.C.3.1.3.1): biochemistry and applications in biomedical, environmental and food sciences
DOI:
https://doi.org/10.54167/tch.v6i2.681Palabras clave:
fosfatasa alcalina, cinética enzimática, biomedicina, ciencias ambientales, ciencias alimentariasResumen
Las fosfatasas alcalinas (FAl; E.C.3.1.3.1) son una superfamilia de metaloenzimas homodiméricas que hidrolizan mono esteres orto fosfóricos unidos a nucleótidos, proteínas y muchos otros sustratos, a pH entre 8-11 y en presencia de iones Zn+2 y Mg+2. Se inhiben con Be++, Fe++, Cu++ y varios poli aniones. Varios estudios han confirmado su carácter pleiotrópico, pero nuevos estudios estructurales, cinéticos y genéticos revelan nuevos roles metabólicos y funcionales. La concentración de FAl total y/ o isoenzimas, ha sido explotada como marcador de varios fenómenos biológicos en ciencias biomédicas (e.g. funcionalidad renal, hepática y ósea), ambientales (e.g. fosfatos en suelo marino y su remoción de aguas residuales), zoología (e.g. ciclos de fertilidad en aves) y alimentos (e.g. pasteurización de la leche). Como herramienta analítica, seguirán dando pie al desarrollo de varias técnicas inmuno enzimáticas, para beneficio de las ciencias biológicas.
Abstract
The alkaline phosphatases (AP) are a superfamily of homodimeric metalloenzymes (E.C.3.1.3.1) that hydrolyze orthophosphoric monoesters linked to nucleotides, proteins and many other substrates, at pH 8-11 and in the presence of Zn+2 and Mg+2 ions. They are inhibited by Be++, Fe++, Cu++ and several anions. Several studies have confirmed their pleiotropic nature, but new structural, kinetic and genetic studies reveal novel metabolic and functional characteristics. Total AP concentration and/or isoenzyme quantification, has been exploited as a marker of several biological phenomenon in biomedical sciences (e.g. renal, hepatic and bone functionality), environmental (e.g. phosphate in the seafloor and its removal from wastewater), zoology (e.g. fertility cycles in birds) and food sciences (e.g. milk pasteurization). As an analytic tool, will give rise to the development in various immune enzymatic techniques for the benefit of the life sciences.
Keywords: alkaline phosphatase, enzyme kinetics, biomedicine, environmental sciences, food sciences.
Descargas
Citas
Álvarez-Solís, J.D., D.A. Gómez-Velasco, N.S. León-Martínez & F.A. Gutiérrez-Miceli. 2010. Manejo integrado de fertilizantes y abonos orgánicos en el cultivo del maíz. Agrociencia 44(5): 575-586. https://www.redalyc.org/articulo.oa?id=30215550007
Atyaksheva, L.F., E.S. Chukhrai & O. M. Poltorak. 2008. The catalytic properties of alkaline phosphatases under various conditions. Russian Journal of Physical Chemistry A, Focus on Chemistry 82(11): 1947-1951. https://doi.org/10.1134/S0036024408110265
Banik, R. & S. K. Pandey. 2009. Selection of metals salts for alkaline phosphatase production using response surface methodology. Food Reseach International 42(4): 470 – 475. https://doi.org/10.1016/j.foodres.2009.01.018
Bárcena, J. A, C. García, C.A. Padilla, E. Martínez & J. Díez. 2007. Caracterización Cinética de la fosfatasa alcalina. Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba. https://tinyurl.com/msx2fecc
Belland, L., L. Visser, S. Poppema & R. A. Stinson. 1993. Characterization of the alkaline phosphatase expressed on the surface of a Hodgki’s lymphoma cell line. Enzyme Protein 47(2): 73-82. https://doi.org/10.1159/000468660
Blake, M. S., K. H. Johnston, G. J. Russel-Jones & E. C. Gotschlich. 1984. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Analytical Biochemistry 136(1): 175-179. https://doi.org/10.1016/0003-2697(84)90320-8
Brenda. 2011. Comprehensive Enzyme Information System. https://www.brenda-enzymes.org/
Brocklehurst, K. R., J. L. Hobman, B. Lawley, L. Blank, S. J. Marshall, N. L. Brown & A. P. Morby. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology 31(3): 893–902. https://doi.org/10.1046/j.1365-2958.1999.01229.x
Butterworth, P. J. 1983. Biochemistry of mammalian alkaline phosphatases. Alkaline phosphatase. Cell Biochemistry and Function 1(2): 66–70. https://doi.org/10.1002/cbf.290010202
Calderón de la Barca, A. M., A. L. Jensen & T. C. Bog-Hansen. 1993. Affinity methods with lectins: a tool to identify canine alkaline phosphatase isoenzymes. Journal of Biochemical and Biophysical Methods 27(3): 69-180. https://doi.org/10.1016/0165-022X(93)90001-5
Chen, F., G. Liu, Z. Xu & Z. Seng. 2008. Effect of metal ions on the secondary structure and activity of calf intestine phosphatase. BMB reports 41(4): 305-309. https://doi.org/10.5483/bmbrep.2008.41.4.305
Coleman, J. E. 1992. Structure and Mechanism of Alkaline Phosphatase. Annual Reviews of Biophysics and Biomolecular Structure 21: 441-483. https://doi.org/10.1146/annurev.bb.21.060192.002301
Derman, A. L. & J. Beckwith. 1995. Escherichia coli alkaline phosphatase localized to the cytoplasm slowly acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. Journal of Bacteriology 177(13): 3764-3770. https://doi.org/10.1128/jb.177.13.3764-3770.1995
Di-Carlo, M. B., A. G. Gomez, L. B. Madalena, M. L. Facio, M. A. Pizzolato & G. A. Negri. 2007. Utilidad de la fosfatasa alcalina urinaria como marcador precoz de lesión tubular renal. Acta Bioquímica Clínica Latinoamericana 41(3): 369-77. https://www.redalyc.org/articulo.oa?id=53541311
Eguchi, M. 1995. Alkaline phosphate isozymes in insects and comparison with mammalian enzyme. Comparative Biochemistry and Physiology Part B. Biochemistry & Molecular Biology 111(2):151-62. https://doi.org/10.1016/0305-0491(94)00248-s
Eide, D. J. 2003. Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. The Journal of Nutrition 133 (5): S1532-S1535. https://doi.org/10.1093/jn/133.5.1532S
Fahmy, A. S., M.O. El-Badry, H.A. Zein, W.G. Shousha & E. M. Mahdy. 2008. Purification and characterization of two alkaline phosphatases from camel small intestine. The Egyptian Journal of Biochemistry and Molecular Biology 26(1): 31-54.
Gao, Y.F., H. Yang, X.H. Zhan & L.X. Zhou. 2012. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing. Environmental Science and Pollution Research 20(3):1482-1492. https://doi.org/10.1007/s11356-012-0991-0
Hawrylak, K. & R.A. Stinson. 1998. The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylinositol phospholipase C or proteolysis. Journal of Biological Chemistry 263(28): 14368-14373. https://doi.org/10.1016/S0021-9258(18)68229-8
Hemashenpagam, N. & T. Selvaraj. 2011. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR´s) on medicinal plant solanum viarum seedlings. Journal of Environmental Biology 32(5): 579-83
Holtz, K. M, Stec, B. and Kantrowitz, E. R. 1999. A model of the transition state in the alkaline phosphatase reaction. Journal of Biological Chemistry 274(13): 8351-8354. https://doi.org/10.1074/jbc.274.13.8351
Hoshi, K., N. Amizuka, K. Oda, Y. Ikehara & H. Ozawa. 1997. Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem. Cell Biol. 107(3): 183-191. https://doi.org/10.1007/s004180050103
Iriarte, J., R.R. Gonzalez, R.A. Quiñonez, S.H. Kang, J.H. Shim & C.P. Valenzuela. 2006. Enzyme activities of phytoplankton in the South Shetland Islands (Antarctica) in relation to nutrients and primary production. Revista Chilena de Historia Natural 79(4): 505-516. https://www.redalyc.org/articulo.oa?id=369944280009
Khatkhatay, M. I. & M. Desai. 1999. A comparison of performances of four enzymes used in ELISA with special reference to beta-lactamase. Journal of Immunoassay 20(3): 151-183. https://doi.org/10.1080/01971529909349349
Kerk, D., J. Bulgrien, D. W. Smith, B. Barsam, S. Veretnik & M. Gribskov. 2002. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiology 129(2): 908-925. https://doi.org/10.1104/pp.004002
Kim, J. M., J.Y. Chung, S. Y. Lee, E. W. Choi, M. K. Kim, C. Y. Hwang & H. Y. Youn. 2006. Hypoglycemic effects of vanadium on alloxan monohydrate induced diabetic dogs. Journal of Veterinary Sciences 7(4): 391-395. https://doi.org/10.4142/jvs.2006.7.4.391
Kihn, L., D. Rutkowski, T. Nakatsui & R.A. Stinson. 1991. Properties of amphiphilic and hydrophilic forms of alkaline phosphatase from human liver. Enzyme 45(3): 155-164. https://doi.org/10.1159/000468882
Koncki, R., K. Rudnicka & K. Tymecki. 2006. Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. Analytica Chimica Acta 577(1): 134-139. https://doi.org/10.1016/j.aca.2006.05.100
Kozlenkov, A., T. Manes, M. F. Hoylaerts & J. L. Milan. 2002. Function assignment to conserved residues in mammalian alkaline phosphatases. Journal of Biological Chemistry 277(25): 22992-22999. https://doi.org/10.1074/jbc.m202298200
Koutsioulis, D., A. Lyskowski, S. Mäki, E. Guthrie, G. Feller, V. Bouriotis & P. Heikinheimo. 2010. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Protein Science 19(1): 75-84. https://doi.org/10.1002/pro.284
Li, M., W. Ding, J. J. Smee, B. Baruah, G. R. Wilsky & D. C.Crans. 2009. Anti-diabetic effects of vanadium (III, IV, V)-chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals 22(6): 895-905. https://doi.org/10.1007/s10534-009-9241-4
Llinas, P., M. Masella, T. Stigbrand, A. Ménez, E. A. Stura & M. H. Le Du. 2006. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones. Protein Science 15(7): 1691–1700. https://doi.org/10.1110%2Fps.062123806
López-Canut, V., M. Roca, J. Bertran, V. Moliner & I. Tuñon. 2011. Promiscuity in Alkaline Phosphatase Superfamily. Unraveling Evolution through Molecular Simulations. Journal of the American Chemical Society 133 (31): 12050-12062. https://doi.org/10.1021/ja2017575
Luan, S. 2003. Protein phosphatases in plants. Annual Review of Plant Biology 54: 63-92. https://doi.org/10.1146/annurev.arplant.54.031902.134743
Marchand, S., M. Merchiers, W. Messens, K. Coudijzer & J. De Block. 2009. Thermal inactivation kinetics of alkaline phosphatase in equine milk. International Diary Journal 19(12): 763-767. https://doi.org/10.1016/j.idairyj.2009.05.009
Miao, D. & A. J. Scutt. 2002. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. Journal of Histochemistry & Cytochemistry 50(3): 333-340. https://doi.org/10.1177/002215540205000305
Millan, J. L. 2006. Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH and Co. ISBN 9783527310791.
Murphy, J. E. & E. R. Kantrowitz. 1994. Why are mammalian alkaline phosphatases much more active than bacterial phosphatases? Molecular Microbiology 12(3): 351-357. https://doi.org/10.1111/j.1365-2958.1994.tb01024.x
Neumann, H. 1968. Substrate selectivity in the action of alkaline and acid phosphatases. Journal of Biological Chemistry 243(18): 4671-4676. https://doi.org/10.1016/S0021-9258(18)93171-6
O’Brien, P.J. & D. Herschlag. 2001. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 40(19): 5691- 5699. https://doi.org/10.1021/bi0028892
Orimo, H. 2010. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. Journal of Nippon Medical School 77(1):4-12. https://doi.org/10.1272/jnms.77.4
Payne, C. & A. Wilbey. 2009. Alkaline phosphatase in pasteurized milk: A quantitative comparison of Fluorophos and colourimetric procedures. International Journal of Dairy Technology 62(3): 308-314 https://doi.org/10.1111/j.1471-0307.2009.00503.x
Panosian, T.D., D. P. Nannemann, G. R. Watkins, V. V. Phelan, W. H. McDonald, B. E. Wadzinski, B. O. Bachmann & T. M. Iverson. 2011. Bacillus cereus phosphopentomutasa is an alkaline phosphatase family member that exhibits an altered entry point into de catalytic cycle. Journal of Biological Chemistry 286(10): 8043-8054. https://doi.org/10.1074%2Fjbc.M110.201350
Pizzani, P, S. Godoy, M. León, E. Rueda, M.V. Castañeda & A. Arias. 2008. Efecto de concentraciones crecientes de fósforo fitico sobre La actividad de la enzima fitasa y fosfatasa alcalina en el epitelio intestinal de ovinos jóvenes. Revista Científica 18(1): 59-64. https://www.redalyc.org/articulo.oa?id=95918110
Qiao, W., C. Eliis, J. Steffen, C. Y. Wu & D. J. Eide. 2009. Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Molecular Microbiology 72(2): 320-324 https://doi.org/10.1111/j.1365-2958.2009.06644.x
Ramesh, A., S.K. Sharma, O.P. Joshi & I.R. Khan. 2011. Phytase, phosphatase activity and p-nutrition of soybean as influenced by inoculation of bacillus. Indian Journal of Microbiology 51(1): 94-99. https://doi.org/10.1007/s12088-011-0104-7
Rasmy, G.E., W.K.B. Khalili, S.A. Mharib, A.A. Kawkab & E.W. Jwany. 2011. Efecto del aceite de pescado de la dieta en cáncer de colon inducido por dimetil hidrazina en ratas. Grasas y aceites 62(3): 253-267. https://dialnet.unirioja.es/servlet/articulo?codigo=3676791
Sekiguchi, S., Y. Hashida, K. Yasakawa, Inouye, K. 2012. Stabilization of bovine intestine alkaline phosphatase by sugars. Bioscience, Biotechnology, and Biochemistry 76(1): 95-100. https://doi.org/10.1271/bbb.110553
Schillace, R. V. & J. D. Scott. 1999. Organization of kinases, phosphatases, and receptor signaling complexes. The Journal of Clinical Investigation 103(6): 761–765. https://doi.org/10.1172/jci6491
Schlesinger, D.P. 1995. Methemoglobinemia and anemia in a dog with acetaminophen toxicity. The Canadian Veterinary Journal 36(8):515-517
Seibel, M. J. 2005. Biochemical markers of bone turnover: Part 1: biochemistry and variability. The Clinical Biochemist Reviews 26(4): 97-122.
Sharma, A.K., S. Bharti, J. Bhatia, Nepal, S., Malik, S., Ray, R., Kumari, S., Arva, D.S. 2012. Sesamol alleviates diet-induced cardiometabolic syndrome in rats via up-regulating PPARy, PPARa and e-NOS. The Journal of Nutritional Biochemistry 23(11):1482-1489. https://doi.org/10.1016/j.jnutbio.2011.09.011
Shin, M.O., S. Yoon & J.O. Moon. 2010. The proanthocyanidins inhibit dimethylnitrosamine-induced liver damage in rats. Archives of Pharmacal Research 33(1): 167-173. https://doi.org/10.1007/s12272-010-2239-1
Sofo, A., A. Scopa, S. Dumontet, A. Mazzatura & V. Pasquale. 2012. Toxic effects of four sulphonylureas herbicides onsoil microbial biomass. Journal of Environmental Science and Health, Part B 47(7): 653-659. https://doi.org/10.1080/03601234.2012.669205
Sorimachi, K. 1987. Activation of alkaline phosphatase with Mg2+ and Zn2+ in rat Hepatoma Cells. Journal of Biological Chemistry 262(4): 1535-1541. https://doi.org/10.1016/S0021-9258(19)75668-3
Tazinsong, I.A., Z.N. Senwo & M.I. Williams. 2012. Mercury speciation and effects on soil microbial activities. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering 47(6): 854-862. https://doi.org/10.1080/10934529.2012.665000
Valentín, I.R.A. 2008. Determinación de valores de referencia para hepatología, química sérica, fisiología y morfometría del tucán real (Ramphastus sulfuratus) en cautiverio en Guatemala (Tesis, Universidad de San Carlos en Guatemala). http://www.repositorio.usac.edu.gt/7157/
Van-Loo, B., S. Jonas, A. C. Babtie, A. Benjdia, O. Berteau, M. Hyvönen & F. Hollfelder. 2010. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proceedings of the National Academy of Sciences 107(7): 2740-2745. https://doi.org/10.1073/pnas.0903951107
Wahnon, R., U. Cogan & D. Mokady. 1992. Dietary fish oil modulates the alkaline phosphatase activity and not the fluidity of rat microvillus membrane. The Journal of Nutrition 122(5): 1077-1084. https://doi.org/10.1093/jn/122.5.1077
Wang, J., K. A. Stieglitz & E. R. Kantrowitz. 2005. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44(23): 8378-86. https://doi.org/10.1021/bi050155p
Xie, C., R. Lu, Y. Huang, Q. Wang & X. Xu. 2010. Effects of ions and phosphates on alkaline phosphatase activity in aerobic sludge system. Bioresource Technology 101(10): 3394 – 3399. https://doi.org/10.1016/j.biortech.2009.12.047
Xie, W., M. Nakabayashi, M. M. Regan & W. K. Oh. 2007. Higher prostate-specific antigen levels predict improved survival in patients with hormone-refractory prostate cancer who have skeletal metastases and normal serum alkaline phosphatase. Cancer 110(12): 2709-2715. https://doi.org/10.1002/cncr.23111
Yan, Y., L. Peng, W. X. Liu, F-H. Wan & M.K. Harris. 2011. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemissia tabaci biotype B and Trialeurodes vaporarorum. Journal of Insect Science 11(9): 1-13. https://doi.org/10.1673/031.011.0109
Zalatan, J. G., T. D. Fenn & D. Herschlag. 2008. Comparative enzymology in the alkaline phosphatase super family to determine the catalytic role of an active site metal ion. Journal of Molecular Biology 384(5):1174-1189. https://doi.org/10.1016/j.jmb.2008.09.059
Zhang, C.L., T. Zeng, X.L. Zhao, L.H. Yu, Z.P. Zhu & K.Q. Xie. 2012. Protective effects of garlic oil on hepatocarcinoma induced N-nitrosodiethylamine in rats. International Journal of Biological Sciences 8(3):363-74. https://doi.org/10.7150/ijbs.3796
Zhang, L., M. Balcerzak, J. Radisson, C. Thouverey, S. Pikula, G. Azzar & R. Buchet. 2005. Phosphodiesterase Activity of Alkaline Phosphatase in ATP-initiated Ca2+ and Phosphate Deposition in Isolated Chicken Matrix Vesicles. Journal of Biological Chemistry 44(4): 37289–37296. https://doi.org/10.1074/jbc.M504260200
Publicado
Cómo citar
-
Resumen1274
-
PDF6474
-
HTML888