Comportamiento en vibraciones longitudinales y transversales de vigas de madera antigua de Picea abies

Longitudinal and transversal vibrations behavior of old Picea abies wood beams

Autores/as

  • Javier Ramón Sotomayor-Castellanos Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.54167/tch.v8i1.652

Palabras clave:

frecuencia, módulo de elasticidad, coeficiente de amortiguamiento, anisotropía, ensayos no destructivos

Resumen

El objetivo fue evaluar el comportamiento dinámico de la madera de Picea abies. Se realizaron pruebas de vibraciones longitudinales y transversales en cinco vigas con una antigüedad de cien años. Se propone un protocolo experimental para evaluar la resistencia mecánica y la capacidad de amortiguamiento de vibraciones mecánicas de las vigas empleando pruebas no destructivas. Se calcularon el módulo de elasticidad y el coeficiente de amortiguamiento correspondientes a las direcciones longitudinal, radial y tangencial de la madera. Los resultados indicaron una relación de anisotropía de los módulos de elasticidad del orden de ET EL > ER, con coeficientes de variación aceptables en experimentación de la madera. Igualmente, los coeficientes de amortiguamiento mostraron una anisotropía de: tan T > tan R > tan L. Se concluyó que las vigas antiguas tienen propiedades mecánicas similares a las de madera recientemente cortada. Los parámetros determinados pueden servir como referencia para el análisis estructural de elementos de madera presentes en edificaciones antiguas. Sin embargo, es necesario considerar las condiciones de cada caso de estudio en particular.

Abstract

The objective was to evaluate the dynamic behavior of Picea abies wood. Longitudinal and transversal vibrations tests were performed in five wood beams with an antiquity of one hundred years. An experimental protocol is proposed to evaluate the mechanical strength and the damping capacity of the mechanical vibrations of beams using nondestructive methods. The modulus of elasticity and the damping coefficient corresponding to the longitudinal, radial and tangential directions of the wood were calculated. The results showed an anisotropy ratio of the moduli of elasticity in the order of ET  EL > ER, with acceptable variation coefficients in experimental wood. Similarly, the damping coefficients showed anisotropy of: T > tan R > tan L. It was concluded that the old wood beams have similar mechanical properties to those of recently cut wood. The determined parameters can serve as a reference for the structural analysis of wooden elements present in old buildings. Nonetheless, it is necessary to consider the conditions of each case study in particular.

Keywords: frequency, modulus of elasticity, damping coefficient, anisotropy, non destructive testing.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bodig, J. & B.A. Jayne. 1982. Mechanics of Wood Composites. Van Nostrand Reinhold. ISBN 0442008228, 9780442008222.

Brancheriau, L. & H. Bailleres. 2002. Natural vibration analysis of clear wooden beams: a theoretical review. Wood Science and Technology 36(4): 347-365. https://doi.org/10.1007/s00226-002-0143-7

Brémaud, I., J. Gril & B. Thibaut. 2011. Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Science and Technology 45:735- 754. https://doi.org/10.1007/s00226-010-0393-8

Brémaud, I., J. Ruelle, A. Thibaut & B. Thibaut. 2012. Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung 67(1):75-85. https://doi.org/10.1515/hf-2011-0186

Cointe, A., P. Castéra, P. Morlier & P. Galimard, P. 2007. Diagnosis and monitoring of timber buildings of cultural heritage. Structural Safety 29(4):337-348. https://doi.org/10.1016/j.strusafe.2006.07.013

Chopra, A.K. 2011. Dynamics of Structures. Fourth Edition. Prentice-Hall International. Series in Civil Engineering and Engineering Mechanics. ISBN 0132858037, 9780132858038.

Chui, Y.H. & I. Smith. 1990. Influence of rotatory inertia, shear deformation and support condition on natural frequencies of wooden beams. Wood Science and Technology 24(3):233-245. https://doi.org/10.1007/BF01153557

Dietsch, P. & J. Köhler. 2010. Assessment of Timber Structures. COST Action E55 Modelling of the Performance of Timber Structures. European Science Foundation. Shaker Verlag. Deutschland. https://tinyurl.com/3n5p2ymw

Drdácký, M.F., M. Kloiber, and M. Kotlínová. 2007. Low invasive diagnostics of historic timber. En In-Situ Evaluation of Historic Wood and Masonry Structures. NSF/MŠMT supported US-Czech project and RILEM Workshop. Ú́TAM AV ČR. ISBN 9788086246369, 8086246361.

European Committee for Standardization. 1997. European Standard EN 318. Structural timber. Grading. Requirements for visual strength grading standards. Brussels.

European Committee for Standardization. 2003. European Standard EN 408. Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. European Committee for Standardization. Brussels.

European Committee for Standardization. 2004. European Standard EN 384. Structural timber–Determination of characteristic values of mechanical properties and density. European Committee for Standardization. Brussels.

Havimo, M. 2009. A literature-based study on the loss tangent of wood in connection with mechanical pulping. Wood Science and Technology 43(7):627-642. https://doi.org/10.1007/s00226-009-0271-4

International Council on Monuments and Sites. 1999. Principles for the Preservation of Historic Timber Structures. Mexico. https://tinyurl.com/mr2fmcbr

International Organization for Standardization. 2003. International Standard ISO 13822: Bases for design of structures -Assessment of existing structures. Switzerland.

International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage. 2005. Recommendations for the analysis, conservation and structural restoration of architectural heritage. ICOMOS.

Köhler, J., J.D. Sørensen & M.H. Faber. 2007. Probabilistic modeling of timber structures. Structural Safety 29(4):255-267. https://doi.org/10.1016/j.strusafe.2006.07.007

Larsson, D., S. Ohlsson, M. Perstorper & J. Brundin. 1998. Mechanical properties of sawn timber from Norway spruce. Holz als Roh- und Werksloff 56(5):331-338. https://doi.org/10.1007/s001070050329

Machek, L., H. Militz, and R. Sierra-Alvarez. 2001. The use of an acoustic technique to assess wood decay in laboratory soil- bed tests. Wood Science and Technology 34(6):467-472. https://doi.org/10.1007/s002260000070

Meyers, M.A. 1994. Dynamic Behavior of Materials. John Wiley & Sons. ISBN 9780471582625, 9780470172278. https://doi.org/10.1002/9780470172278

Moshiri, F., B. Mobasher & O.T. Issa. 2009. Detection of defects in timber using dynamic excitation and vibration analysis (Tesis, Växjö University). https://www.diva-portal.org/smash/get/diva2:224544/FULLTEXT01.pdf

Olander, K., l. Salmen & M. Htun. 1990. Relation between mechanical properties of pulp fibers and the activation energy of softening as affected by sulfonation. Nord & Pulp Paper Journal 5(2):60-64. https://doi.org/10.3183/npprj-1990-05-02-p060-064

Olsson,A.M., L. Salmén & M. Htun. 1997.The effect of lignin composition on the viscoelastic properties of wood. Nordic Pulp & Paper Journal 12(3):140-144. https://doi.org/10.3183/npprj-1997-12-03-p140-144

Olsson, A., J. Oscarsson, M. Johansson & B. Kaällsner. 2012. Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation. Wood Science and Technology 46(4): 667-683. https://doi.org/10.1007/s00226-011-0427-x

Padevět, P., T. Tesárek & T. Plachý. 2011. Evolution of mechanical properties of gypsum in time. International Journal of Mechanics 1(5): 1-9. https://www.naun.org/main/NAUN/mechanics/19-1160.pdf

Pellerin, R.F. & R.J. Ross. 2002. Nondestructive Evaluation of Wood. Forest Products Society. ISBN 1892529262, 9781892529268.

Perstorper, M. 1993. Dynamic modal tests of timber evaluation according to the Euler and Timoshenko theories. En Proceedings of the 9th International Symposium on Nondestructive Testing of Wood (pp: 45-54). Washington State University.

Placet. V., J. Passard, and P. Perré. 2007. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 °C: hardwood vs. softwood and normal vs. reaction wood. Holzforshung 61:548-557. https://doi.org/10.1515/HF.2007.093

Raichel, D.R. 2006. The science and applications of acoustics. 2nd. Edition. Springer. ISBN 0387260625, 9780387260624.

Salmén, L. 1984. Viscoelastic properties of in situ lignin under water saturated conditions. Journal of Materials Science 19:3090-3096. https://doi.org/10.1007/BF01026988

Saporiti, J. & P. Palma. 2011. Non-destructive evaluation of the bending behavior of in-service pine timber structural elements. Materials and Structures 44(5):901-910. https://doi.org/10.1617/s11527-010-9674-9

Steiger, R. & M. Arnold. 2009. Strength grading of Norway spruce structural timber: revisiting property relationships used in EN 338 classification system. Wood Science and Technology 43(3):259-278. https://doi.org/10.1007/s00226-008-0221-6

Timoshenko, S., D.H. Young & W. Weaver. 1994. Vibration problems in Engineering. Reprinted Edition. John Wiley & Sons.

Descargas

Publicado

2020-10-31

Cómo citar

Sotomayor-Castellanos, J. R. (2020). Comportamiento en vibraciones longitudinales y transversales de vigas de madera antigua de Picea abies: Longitudinal and transversal vibrations behavior of old Picea abies wood beams. TECNOCIENCIA Chihuahua, 8(1), 46–56. https://doi.org/10.54167/tch.v8i1.652
Metrics
Vistas/Descargas
  • Resumen
    156
  • PDF
    74
  • HTML
    124

Métrica