Análisis de membranas poliméricas compuestas por Microscopía de Fuerza Atómica

Atomic Force Microscopy analysis of polymeric composite membranes

Autores/as

DOI:

https://doi.org/10.54167/tch.v1i2.46

Palabras clave:

Membranas, Microscopía de fuerza atómica, carbón activado

Resumen

Entre los métodos más novedosos para la caracterización superficial de materiales sólidos se encuentra el microscopio de fuerza atómica, el cual permite obtener datos de rugosidad, porosidad y formación de nódulos en superficie. En el presente trabajo se prepararon membranas de triacetato de celulosa y nanopartículas de carbón activado por medio de evaporación de solvente en diferentes condiciones fisicoquímicas. Se utilizó el microscopio de fuerza atómica en su modalidad de “tapping” para la obtención de imágenes de altura y fase de la superficie de las membranas con el fin de estudiar la nanodispersión de las partículas en la matriz polimérica. En general las membranas más homogéneas se obtuvieron a bajas temperaturas (35 °C) y mayor humedad (70 % HR).

DOI: https://doi.org/10.54167/tch.v1i2.46

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ballinas, L., C. Torras, V. Fierro & R. García-Valls. 2004. Factors influencing activated carbon polymeric composite membrane structure and performance. J of Physics and Chemistry of solids 65(2-3):633–637. https://doi.org/10.1016/j.jpcs.2003.10.043

Ballinas, L., Terrazas-Bandala, R. Ibarra-Gomez, M. Mendoza- Duarte, L. Manjarrez- Nevárez & G. Gonzalez-Sanchez. 2006. Structural and performance variation of activated carbon-polymer films. Polymers for Adv. Tech. 17(11-12):991-999. https://doi.org/10.1002/PAT.842

Binning, G., C. F. Quate & Ch. Gerber. 1986. Atomic force microscope. Phys Rev Lett. 56:930. https://doi.org/10.1103/PhysRevLett.56.930

Elimelech, M., X. Zhu, A. E. Childress & S. Hong. 1997. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membrane Sci. 127(1):101-109. https://doi.org/10.1016/S0376-7388(96)00351-1

Esteves, A. C., A. M. Barros-Timmons, J. A. Martins, W. Zhang, J. Cruz-Pinto & T. Trindade. 2006. Crystallization behaviour of new poly (tetra methyleneterephthalamide) nanocomposites containing SiO2 fillers with distinct morphologies. Composites: Part B. 36(1):51–59. https://doi.org/10.1016/j.compositesb.2004.04.005

Gould, S. A. C., D. A. Schiraldi, & M. L. Occellil.1997. Analysis of polyethylene terephthalate (PET) films by atomic force microscopy. J Appl. Polymer Sci. 65 (7):1237-1243. https://doi.org/10.1002/(SICI)1097-4628(19970815)65:7<1237::AID-APP1>3.0.CO;2-J

Hamza, A., G. Chowdhury, T. Matsuura & S. Sourirajan. 1997. Sulphonated poly(2,6-dimethyl-1,4-phenylene oxide)- polyethersulphone composite membranes. Effects of composition of solvent system, used for preparing casting solution, on membrane- surface structure and reverse-osmosis performance. J Membrane Sci. 129(1):55-64. https://doi.org/10.1016/S0376-7388(96)00331-6

Khayet, M., K.C. Khulbe, & T. Matsuura. 2004. Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. J Membrane Sci. 238(1-2):199–211. https://doi.org/10.1016/j.memsci.2004.03.036

Kear, B. 1998. Nanostructured bulk materials: Synthesis, processing, properties and performance. En R&D Status and Trends. Siegel. ISBN 0792358546, 9780792358541

Khulbe, K. C. & T. Matsuura. 2000. Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review. Polymer 41(5):1917-1935. https://doi.org/10.1016/S0032-3861(99)00359-6

Khulbe, K.C., T. Matsuura, G. Lamarche & H. J. Kim.1997. The morphology characterization and performance of dense PPO membranes for gas separation. J Membrane Sci. 135(2):211-223. https://doi.org/10.1016/S0376-7388(97)00138-5

Khulbe, K.C., F. Hamad, C. Feng, T. Matsuura & M. Khayet. 2004. Study of the surface of the water treated cellulose acetate membrane by atomic force microscopy. Desalination 161(3):259- 262. https://doi.org/10.1016/S0011-9164(03)00706-9

Min, J. S., Y. Kiyozumi & N. Itoh. 2003. Sealant-free preparation technique for high-temperature use of a composite zeolite membrane. Ind. Eng. Chem. Res. 42 (1):80-84. https://doi.org/10.1021/ie020280m

Park, H. M., Liang, X; Mohanty, A. K., Misra, M. & Drzal, L. T. 2004. Effect of compatibilizer on nanostructure of biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37(24):9076-9082. https://doi.org/10.1021/ma048958s

Schmidt, G. & M. M. Malwitz. 2003. Properties of polymer– nanoparticle composites. Current Opinion in Colloid and Interface Science 8 (1):103–108. https://doi.org/10.1016/S1359-0294(03)00008-6

Singh, S., K. C. Khulbe, T. Matsuura & P. Ramamurthy.1998. Membrane characterization by solute transport and atomic force microscopy. J Membrane Sci. 142(1):111-127. https://doi.org/10.1016/S0376-7388(97)00329-3

Stamatialis, D.F., C. R. Dias & M. N. Pinho. 1999. Atomic force microscopy of dense and asymmetric cellulose-based membranes. J Membrane Sci. 160(2):235-242. https://doi.org/10.1016/S0376-7388(99)00089-7

Descargas

Publicado

2007-08-31

Cómo citar

Terrazas Bandala, L. P., González Sánchez, G., Nevárez Moorillón, G. V., & Ballinas-Casarrubias, M. de L. (2007). Análisis de membranas poliméricas compuestas por Microscopía de Fuerza Atómica: Atomic Force Microscopy analysis of polymeric composite membranes. TECNOCIENCIA Chihuahua, 1(2), 18–26. https://doi.org/10.54167/tch.v1i2.46
Metrics
Vistas/Descargas
  • Resumen
    285
  • PDF
    72
  • HTLM
    14

Métrica