Materiales supramoleculares: quimiosensores y otras aplicaciones prácticas
Supramolecular materials: Chemosensors and other practical applications
DOI:
https://doi.org/10.54167/tch.v17i4.1316Palabras clave:
sensores, material supramolecular, quimiosensores, reconocimiento molecular, aplicacionesResumen
La química supramolecular tiene como uno de sus objetos de estudio el reconocimiento molecular, el cual es un proceso que involucra cierta complementariedad y selectividad por parte de las especies que interactúan entre sí para generar el complejo o supramolécula, este proceso de reconocimiento específico de una molécula hacia otro se ha expandido y aplicado al diseño de sistemas que funcionen como sensores moleculares de diferentes especies ya sea de interés biológico o industrial. El objetivo del presente artículo es presentar el crecimiento y los principales logros que ha tenido este campo de la ciencia y tecnología mediante la revisión de conceptos clásicos en la química supramolecular y la presentación de ejemplos que muestran los principales resultados en cuanto al incremento y el avance en el desarrollo de sensores moleculares disponibles en la actualidad.
Descargas
Citas
Abadi, M. D. M., Chamsaz, M., Arbab-Zavar, M. H. & Shemirani, F. (2013) Supramolecular dispersive liquid-liquid microextraction based solidification of floating organic drops for speciation and spectrophotometric determination of chromium in real samples. Anal. Methods 5(12): 2971-2977. https://doi.org/10.1039/C3AY00036B
Abd El-Rahman, M. K., Mazzone, G., Mahmoud, A. M., Sicilia, E. & Shoeib, T. (2019) Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor. Microchem. J. 146: 735-741. http://dx.doi.org/10.1016/j.microc.2019.01.046
Al-Saidi, H. M. & Khan, S. (2022) Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: a review. Critical Reviews in Analytical Chemistry 13:1-17. https://doi.org/10.1080/10408347.2022.2063017
Altunay, N. & Katin, K. P. (2020) Ultrasonic-assisted supramolecular solvent liquid-liquid microextraction for determination for manganese and zinc at trace levels in vegetables: experimental and theoretical studies. Journal of Molecular Liquids 310: 1-9. https://doi.org/10.1016/j.molliq.2020.113192
Anslyn, E. V. & Breslow, R. (1989). On the mechanism of catalysis by ribonuclease: cleavage and isomerization of the dinucleotide UpU catalyzed by imidazole buffers. Journal of the American Chemical Society 111(12): 4473–4482. https://doi.org/10.1021/ja00194a050
Ayankojo, A. G., Reut, J., Ciocan, V., Öpik, A. & Syritski, V. (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209: 120502. https://doi.org/10.1016/j.talanta.2019.120502
Aydin, F., Yilmaz, E. & Soylak, M. (2015) Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett-Burman and central composite experimental design. RSC Adv. 5(115): 94879-94886. https://doi.org/10.1039/C5RA15856G
Baldini, L., Cacciapaglia, R., Casnati, A., Mandolini, L., Salvio, R., Sansone, F. & Ungaro, R. (2012). Upper Rim Guanidinocalix[4]arenes as Artificial Phosphodiesterases. The Journal of Organic Chemistry 77(7): 3381–3389. https://doi.org/10.1021/jo300193y
Baranwal, J., Barse, B., Gatto, G., Broncova, G. & Kumar, A. (2022) Electrochemical sensors and their applications: a review. Chemosensors 10(9): 363. https://doi.org/10.3390/CHEMOSENSORS10090363
Basabe-Desmonts, L., Reinhoudt, D. N. & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36(6): 993-1017. https://doi.org/10.1039/B609548H
Beer, P., Barendt, T. A. & Lim, J. Y. C. (2022). Supramolecular chemistry: Fundamentals and Applications. Oxford University Press. ISBN: 9780198832843
Beatty, M. A., Sellinger, A.J., Li. Y. Q. & Hof, F. (2019) Parallel synthesis and screening of supramolecular chemosensors that achieve fluorescent turn-on detection of drugs on saliva. J. Am. Chem. Soc. 141(42): 16763-16771. http://dx.doi.org/10.1021/jacs.9b07073
Breslow, R. & Schmuck, C. (1996). Goodness of Fit in Complexes between Substrates and Ribonuclease Mimics: Effects on Binding, Catalytic Rate Constants, and Regiochemistry. Journal of the American Chemical Society 118(28): 6601–6605. https://doi.org/10.1021/ja954307n
Chandra, F., Dutta, T. & Koner, A. L. (2020) Supramolecular encapsulation of a neurotransmitter serotonin by cucurbit[7]uril. Front. Chem. 8: 582757. https://doi.org/10.3389/fchem.2020.582757
Chen, J., Zhang, Y., Meng, Z., Guo, L., Yuan, X., Zhang, Y., Chai, Y., Sessler, J. L., Meng, Q. & Li, C. (2020) Supramolecular combination chemotherapy: a pH-responsive co-encapsulation drug delivery system. Chem. Sci. 11(24): 6275-6282. https://doi.org/10.1039%2Fd0sc01756f
de Silva, A. P., Vance, T. P., S.-West, M. E. & Wright, G. D. (2008) Bright molecules with sense, logic, numeracy and utility. Org. Biomol. Chem. 6(14): 2468-2480. https://doi.org/10.1039/B802963F
Díaz-Álvarez, M. & Martín-Esteban, A. (2021) Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications. Biosensors 11(3): 79. https://doi.org/10.3390/BIOS11030079
Galinski, B., Chojnacki, J. & Wagner-Wysiecka, E. (2023) Simple colorimetric copper(II) Sensor-Spectral characterization and possible applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 293: 122472. https://doi.org/10.1016/j.saa.2023.122472
Gan, Y., Yin, G., Xu, Z., Zhou, H., Yu, T., Li, H. & Yin, P. (2023) A dual-functional fluorescent probe for simultaneous visualization and quantification of Au and Pd species in environmental and biological systems. Chemical Engineering Journal 451(4): 138437. https://doi.org/10.1016/j.cej.2022.138437
Imamachi, K., Stefánsson, E., Ohira, A. & Tanito, M. (2019) Treatment of non-infectious ophthalmic inflammatory diseases with 1.5% dexamethasone γ-cyclodextrin nanoparticle eye drops. Acta Ophthalmologica 97(8): 824-827. https://doi.org/10.1111/aos.14119
Jalili, V., Zendehdel, R. & Barkhordari, A. (2021) Supramolecular solvent-based microextraction techniques for sampling and preconcentration of heavy metals: a review. Reviews in Analytical Chemistry 40(1): 93-107. https://doi.org/10.1515/revac-2021-0130
Jin, T. (2010) Near-infrared fluorescence detection of acetylcholine in aqueous solution using a complex of rhodamine 800 and p-sulfonato-calix[8]arene. Sensors 10(3): 2438-2449. https://doi.org/10.3390/s100302438
Kadja, G. T. M., Culsum, N. T. U., Mardiana, S., Azhari, N. J., Fajar, A. T. N. & Irkham. (2022) Recent advances in the enhanced sensing performance of zeolite-based materials. Materialstoday Communications 33: 104331. https://doi.org/10.1016/J.MTCOMM.2022.104331
Kelly, T. R., Bridger, G. & Zhao, C. (1990). Bisubstrate reaction templates. Examination of the consequences of identical versus different binding sites. Journal of the American Chemical Society 112(22): 8024–8034. https://doi.org/10.1021/ja00178a027
Krämer, J., Kang, R., Grimm, L. M., De Cola, L., Picchetti, P. & Biedermann, F. (2022) Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122(3): 3459-3636. https://doi.org/10.1021/acs.chemrev.1c00746
Kubik, S. (2019). Supramolecular chemistry in water. John Wiley & Sons. https://doi.org/10.1002/9783527814923
Kubik, S. (2022). When molecules meet in Water‐Recent contributions of supramolecular chemistry to the understanding of molecular recognition processes in water. ChemistryOpen 11(4): e202200028. https://doi.org/10.1002/open.202200028
Kumar, V., Kim, H., Pandey, B., James, T. D., Yoon, J. & Anslyn, E. V. (2023) Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem. Soc. Rev. 52(2): 663-704. https://doi.org/10.1039/D2CS00651K
Langton, M. J., Serpell, C. J. & Beer, P. D. (2015). Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angewandte Chemie 55(6): 1974–1987. https://doi.org/10.1002/anie.201506589
Lin, Y., Su, Y., Li, Z. & Chen, Y. (2022) Supramolecular combination cancer therapy based on macrocyclic supramolecular materials. Polymers 14(22): 4855. https://doi.org/10.3390/polym14224855
Menon, S., Mathew, M. R., Sam, S., Keerthi, K. & Kumar, K. G. (2020) Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalyical Chemistry 878: 114596. https://doi.org/10.1016/J.JELECHEM.2020.114596
Mizukami, S., Tagano, T., Urano, Y., Odani, A. & Kikuchi, K. (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J. Am. Chem. Soc. 124(15): 3920-3925. https://doi.org/10.1021/ja0175643
Mock, W. L., Irra, T. A., Wepsiec, J. P. & Manimaran, T. (1983). Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. Journal of Organic Chemistry 48(20): 3619–3620. https://doi.org/10.1021/jo00168a070
Mutihac, R. C., Bunaciu, A. A., Buschmann, H. J. & Mutihac, L. (2020) A brief overview on supramolecular analytical chemistry of cucurbit(n)urils and hemicucurbit(n)urils. J. Incl. Phenom. Chem. 98(3-4): 137–148. https://doi.org/10.1007/s10847-020-01019-5
Nilan, M. & Hennig, A. (2022) Enzyme assays with supramolecular sensors-the label-free approach. RSC Adv. (12): 10725-10748. https://doi.org/10.1039/D1RA08617K
Norato, M. A., Beasley, M. H., Campbell, S. G., Coleman, A. D., Geeting, M. W., Guthrie, J. W. Kennell, C. W., Pierce, R. A., Ryberg, R. C., Walker, D. D., Law, J. D. & Todd, T. A. (2007) Demonstration of the caustic-side solvent extraction process for the removal of 137Cs from Savannah River site high level waste. Separation Science & Technology 38(12-13): 2647-2666. https://doi.org/10.1081/SS-120022565
Oberacher, H., Pitterl, F., Erb, R. & Plattner, S. (2015) Mass spectrometric methods for monitoring redox processes in electrochemical cells. Mass. Spectrom. Rev. 34(1): 64 - 92. https://doi.org/10.1002/MAS.21409
Oshikawa, Y., Furuta, K., Tanaka, S. & Ojida, A. (2016) Cell surface anchored fluorescent probe capable of real-time imaging of single mast cell degranulation based on histamine-induced coordination displacement. Anal. Chem. 88(3): 1526–1529. https://doi.org/10.1021/acs.analchem.5b04758
Ozkantar, N., Soylak, M. & Tuzen, M. (2019) Determination of copper using supramolecular solvent-based microextraction for food, spices and water samples prior to analysis by flame atomic absorption spectrometry. Atomic Spectroscopy. 40(1): 17-23. http://dx.doi.org/10.46770/AS.2019.01.003
Panhwar, A. H., Kazi, T., Afridi, H. I., Shah, F., Arain, S. A., Ullah, N., Shahzadi, M., Brahman, K. D. & Khan, A. R. (2016) Preconcentration of cadmium in water and hair by supramolecular solvent-based dispersive liquid-liquid microextraction. Analytical Letters 49(15): 2436-2445. https://doi.org/10.1080/00032719.2016.1149189
Patel, H. H., Trivedi, M., Maniar, M., Ren, C. & Dave, R.H. (2018) Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin on aqueous stability, solubility, and dissolution of novel anti-cancer drug rigosertib. Journal of Pharmaceutical Research International 21(3): 1-20. http://dx.doi.org/10.9734/JPRI/2018/39890
Qian, R. C. & Long, Y. T. (2018) Wearable chemosensors: A review of recent progress. Chemistry Open 7(2): 118-130. https://doi.org/10.1002/OPEN.201700159
Rastegar, A., Alahabadi, A., Esrafili, A., Rezai, Z. & Hosseini-Bandegharaei, A. (2016) Application of supramolecular solvent-based dispersive liquid-liquid microextraction for trace monitoring of lead in food samples. Anal. Methods 8(27): 5533-5539. https://doi.org/10.1039/C6AY01463A
Rosa-Gastaldo, D., Scopano, A., Zaramella, M. & Mancin, F. (2020) Nanoscale supramolecular probes for the naked-eye detection of illicit drugs. ACS Appl. Nano Mater. 3(10): 9616–9621. https://dx.doi.org/10.1021/acsanm.0c02370?ref=pdf
Salvio, R., Mandolini, L. & Savelli, C. (2013). Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; gem-Dialkyl Effect on Catalytic Efficiency. Journal of Organic Chemistry 78(14): 7259–7263. https://doi.org/10.1021/jo401085z
Salvio, R., Volpi, S., Cacciapaglia, R., Sansone, F., Mandolini, L. & Casnati, A. (2016). Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. Journal of Organic Chemistry 81(19): 9012–9019. https://doi.org/10.1021/acs.joc.6b01643
Saylan, Y., Erdem, O., Inci, F. & Denizli, A. (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5(2): 20. https://doi.org/10.3390/biomimetics5020020
Schneider, H. J. (2009) Binding mechanisms in supramolecular complexes. Angewandte Chemie International Edition 48(22): 3924-3977. https://doi.org/10.1002/ANIE.200802947
Schneider, H. J. (2016) Efficiency parameters in artificial allosteric systems. Org. Biomol. Chem. 14(34): 7994-8001. https://doi.org/10.1039/C6OB01303A
Sedghi, R., Javadi, H., Heidari, B., Rostami, A. & S. Varma, R. (2019) Efficient optical and UV–Vis chemosensor based on chromo probes–polymeric nanocomposite hybrid for selective recognition of fluoride ions. ACS Omega 4(14): 16001–16008. https://doi.org/10.1021/acsomega.9b02098
Sergeyeva, T., Yarynka, D., Piletska, E., Linnik, R., Zaporozhets, O., Brovko, O., Piletsky, S. & El’skaya, A. (2019) Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta 201: 204-210. https://doi.org/10.1016/j.talanta.2019.04.016
Seto, D., Soh, N., Nakano, K. & Imato, T. (2010) An Amphiphilic fluorescent probe for the visualization of histamine in living cells. Bioorg. Med. Chem. Lett. 20(22): 6708-6711. https://doi.org/10.1016/j.bmcl.2010.09.003
Shampsipur, M., Hosseini, M., Alizadeh, K., Alizadeh, N., Yari, A., Caltagirone, C. & Lippolis, V. (2005) Novel fluorometric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12]ane NS2O) for selective nanomolar detection of Hg(II) ions. Analytica Chimica Acta 533(1): 17-24. https://doi.org/10.1016/J.ACA.2004.10.069
Shome, A. (2023) Applications of supramolecular materials in real world: a mini review. Asian Journal of Chemistry 35 (2): 305-315. https://doi.org/10.14233/ajchem.2023.26952
Sinn, S., Spuling, E., Brase, S. & Biedermann, F. (2019) Rational design and implementation of a cucurbit[8]uril-based indicator-displacement assay for application in blood serum. Chem. Sci. 10 (27): 6584-6593. https://doi.org/10.1039/C9SC00705A
Song, X., Zhang, Z., Zhu, J., Wen, Y., Zhao, F., Lei, L., Phan-Thien, N. & Khoo, B. C., Li, J. (2020) Thermoresponsive hydrogel induced by dual supramolecular assemblies and its controlled release property for enhanced anticancer drug delivery. Biomacromolecules 21(4): 1516–1527. https://doi.org/10.1021/acs.biomac.0c00077
Steed, J. W., Turner, D. R., Wallace, K. J. (2007) Core concepts in supramolecular chemistry and nanochemistry. John Wiley & Sons, Ltd. J. Am. Chem. Soc. 129(46): 14524 https://doi.org/10.1021/ja0769853
Steed, J. W., Atwood, J. L. & Gale, P. A. (2012) Definition and emergence of supramolecular chemistry adapted in part from supramolecular chemistry (2nd Ed.). Wiley: Chichester, 2009. https://doi.org/10.1002/9780470661345.SMC002
Steed, J. W. & Atwood, J. L. (2022). Supramolecular chemistry (3rd Ed.). Wiley & Sons Ltd. ISBN: 978-1-119-58251-9
Sun, R. B., Zhou, A. G., Li, X. & Yu, H. Z. (2021) Development and application of mobile apps for molecular sensing: a review. ACS Sensors 6(5): 1731–1744. https://doi.org/10.1021/acssensors.1c00512
Tjandra, A. D., Chang, J. Y. H., Ladame, S. & Chandrawati, R. (2020) Optical sensors. In Bioengineering Innovative Solutions for Cancer (pp. 23-45). Academic Press. https://doi.org/10.1016/B978-0-12-813886-1.00003-6
Tromans, R. A., Carter, T. S., Chabanne, L., Crump, M. P., Li, H., Matlock, J. V., Orchard, M. G. & Davis, A. P. (2019) A biomimetic receptor for glucose. Nat. Chem. 11(1): 52–56. https://doi.org/10.1038/s41557-018-0155-z
Turkington, J. R., Bailey, P. J., Love, J. B., Wilson, A. M. & Tasker, P. A. (2013) Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chem. Commun. 49(19): 1891-1899. https://doi.org/10.1039/C2CC37874D
Tusa, J. K. & He, H. (2005) Critical care analyzer with fluorescent optical chemosensors for blood analytes. J. Mater. Chem. 15(27-28): 2640-2647. https://doi.org/10.1039/B503172A
Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T. & Tsuruoka, M. (1983) Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72(11): 1338-1341. https://doi.org/10.1002/jps.2600721125
Van Leeuwen, P. W. N. M. & Raynal, M. (2022). Supramolecular catalysis: New Directions and Developments. John Wiley & Sons. https://doi.org/10.1002/9783527832033
Wang, B. & Anslyn, E. V. (2011) Chemosensors: principles, strategies, and applications. Wiley & Sons. https://doi.org/10.1002/9781118019580
Williams, G.T., Haynes, C. J. E., Fares, M., Caltagirone, C., Histock, J. R. & Gale, P. A. (2021) Advances in applied supramolecular chemistry. Chem. Soc. Rev. 50(4): 2737-2763. https://doi.org/10.1039/D0CS00948B
Wolfbeis, O. S. (2013) Editorial: probes, sensors, and labels: why is real progress slow? Angew. Chem. Int. Ed. 52(38): 9864-9865. https://doi.org/10.1002/ANIE.201305915
Wongkongk, J., Miyahara, T., Ojida, A. & Hamachi, I. (2006) Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew. Chem. Int. Ed. 45(4): 665-668. https://doi.org/10.1002/anie.200503107
Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J. & James, T. D. (2017) Fluorescent chemosensors: the past, present, and future. Chem. Soc. Rev. 46(23): 7105-7123. https://doi.org/10.1039/C7CS00240H
Yatsimirsky, A. K. (2005). Metal ion catalysis in acyl and phosphoryl transfer: Transition states as ligands. Coordination Chemistry Reviews 249(17–18): 1997–2011. https://doi.org/10.1016/j.ccr.2005.04.016
Zavala-Contreras, B., Santacruz-Ortega, H., Orozco-Valencia, A. U., Inoue, M., Ochoa Lara, K. & Navarro, R. E. (2021) Optical anion receptors with urea/thiourea subunits on a TentaGel support. ACS Omega 6(14): 9381–9390. https://doi.org/10.1021/ACSOMEGA.0C05554
Zhang, J. X. J. & Hoshino, K. (2018) Molecular sensors and nanodevices: principles, designs and applications in biomedical engineering (2nd Ed.). Academic Press. https://doi.org/10.1016/C2017-0-02290-5
Zhao, Y., Zou, J., Song, Y., Peng, J., Wang, Y. & Bi, Y. (2020) A novel label-free fluorescence assay for dipeptidyl peptidase 4 activity detection based on supramolecular self-assembly. Chem. Commun. 56 (11): 1629-1632. https://doi.org/10.1039/C9CC09053C
Zheng, Z., Geng, W. C., Li, H. B. & Guo, D. S. (2020) Sensitive fluorescence detection of saliva pepsin by a supramolecular tandem assay enables the diagnosis of gastroesophageal reflux disease. Supramol. Chem. 33 (4): 80-87. https://doi.org/10.1080/10610278.2020.1857762
Publicado
Cómo citar
-
Resumen279
-
PDF191
-
HTML31