Topobathymetric 3D model reconstruction of shallow water bodies through remote sensing, GPS, and bathymetry

Reconstrucción de modelo 3D topobatimétrico de cuerpos de agua someros mediante teledetección, GPS y batimetría

Autores/as

DOI:

https://doi.org/10.54167/tch.v12i1.129

Palabras clave:

DEM, Storage, lake, MCDWI, RTK, sound

Resumen

Since there are no mathematical models that can calculate the Laguna de Bustillos’ water storage levels, water balance requires this data to understand the connectivity between this water body and the Cuauhtemoc aquifer. This article presents a new three-dimensional reconstruction technique based on a time series of multispectral remote sensing images, bathymetry, a topographic survey with high precision GPS, and regional contours. With the images of Landsat ETM+/OLI and Sentinel 2A from 2012 to 2013, 2016, and 2017, the contours of the water surface were extracted using the MNDWI and were associated with an elevation received from GPS. An Autonomous Surface Vehicle was also used to obtain the bathymetry of the lake. A topographic survey was carried out using GPS in populated areas, and the contour lines extracted from the INEGI Continuous Elevations Model 3.0. A DEM was constructed using ArcGIS 10.5.1, and surfaces and volumes were calculated at different elevations and compared with 16 Landsat TM/ETM+/OLI multispectral images from 1999 to 2018. The results showed that the mean of the average intersection area between the test images and the area extracted from the 3D model is above 90.9% according to the confidence interval, kappa overall accuracy 95.2–99.7 %, and a coefficient 89.9–99.3 %. This model proved to be very accurate on a regional scale when the water level exceeded 1971.32 meters above mean sea level and useful to evaluate and administer water resources.

DOI: https://doi.org/10.54167/tch.v12i1.129

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Brooks, K.N., P.F. Ffolliott, & J.A. Magner 2012. Hydrology and the Management of Watersheds. John Wiley & Sons. ISBN 9781118459751. https://doi.org/10.1002/9781118459751

Card, D.H. 1982. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens 48(3): 431–439. https://tinyurl.com/38fdnut5

Chavez, P.S. 1996. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens 62(9): 1025–1035. https://tinyurl.com/3n6vm9yv

Comisión Nacional del Agua. 2016. Estadísticas del agua en México. Secretaría de Medio Ambiente y Recursos Naturales. https://agua.org.mx/biblioteca/estadisticas-del-agua-en-mexico-edicion-2016/

Congalton, R.G. & K. Green. 2008. Assessing the accuracy of remotely sensed data: principles and practices Second Edition. CRC press. ISBN 9780429143977. https://doi.org/10.1201/9781420055139

Congedo, L. 2014. Semi-automatic classification plugin for QGIS. https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/

Dowdy, S., S. Wearden & D. Chilko. 2011. Statistics for Research. John Wiley & Sons. ISBN 0471477427, 9780471477426.

Eltert, J.F. & J.E. Molyneux. 1972. The long-distance propagation of shallow water waves over an ocean of random depth. J. Fluid Mech 53(1):1–15. https://doi.org/10.1017/S0022112072000011

Erdös, P. & A. Rényi. 1959. On the central limit theorem for samples from a finite population. Publ Math Inst Hung. Acad Sci 4: 49–61.

ESA. 2017. Copernicus Open Access Hub. https://scihub.copernicus.eu/

Gesch, D.B., J.C. Brock, C.E. Parrish, J.N. Rogers & C.W. Wright. 2016. Introduction: Special Issue on Advances in Topobathymetric Mapping, Models, and Applications. J. Coast. Res 76:1–3. https://doi.org/10.2112/SI76-001

Giordano, F., G. Mattei, C. Parente, F. Peluso & R. Santamaria. 2015. MicroVeGA (micro vessel for geodetics application): A marine drone for the acquisition of bathymetric data for GIS applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-5/W5:123-130. http://dx.doi.org/10.5194/isprsarchives-XL-5-W5-123-2015

Hanjianga, X., T. Limina & S. Longa. 2008. A strategy to build a seamless multi-scale TIN-DEM database. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37(Part B4):83-86. https://www.isprs.org/proceedings/XXXVII/congress/4_pdf/16.pdf

Hutchinson, M.F., T. Xu & J.A. Stein. 2011. Recent progress in the ANUDEM elevation gridding procedure. Geomorphology. http://hdl.handle.net/1885/63173

Instituto Nacional de Estadística y Geografía. 2016. Continuo de Elevaciones Mexicano 3.0 (CEM 3.0). INEGI.

Instituto Nacional de Estadística y Geografía. 2015. El geoide gravimétrico mexicano 2010. INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825073374

Isiorho, S.A., G. Matisoff & K. When. 1996. Seepage relationships between Lake Chad and the Chad aquifers. Groundwater 34(5):819–826. https://doi.org/10.1111/j.1745-6584.1996.tb02076.x

Jensen, J.R. 2007. Remote Sensing of the Environment: An Earth Resource Perspective Second Edition. Pearson Education. ISBN 0131889508, 9780131889507.

Johnson, B.A., R. Tateishi & N.T. Hoan. 2012. Satellite image pansharpening using a hybrid approach for object-based image analysis. ISPRS Int. J. Geo-Inf 1(3): 228–241. https://doi.org/10.3390/ijgi1030228

Knott, S.T. & J.B. Hersey. 1957. Interpretation of high-resolution echo-sounding techniques and their use in bathymetry, marine geophysics, and biology. Deep Sea Res 4(1957-1958):36–44. https://doi.org/10.1016/0146-6313(56)90030-2

Kottek, M., J. Grieser, C., Beck, B., Rudolf & F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15:259–263. http://dx.doi.org/10.1127/0941-2948/2006/0130

Krause, D. & H. Menard. 1965. Depth distribution and bathymetric classification of some sea-floor profiles. Mar. Geol. 3(3):169–193. https://doi.org/10.1016/0025-3227(65)90030-7

Leon, J.X. & T. Cohen. 2012. An improved bathymetric model for the modern and palaeo Lake Eyre. Geomorphology 173-174:69–79. https://doi.org/10.1016/j.geomorph.2012.05.029

Lillesand, T., R.W. Kiefer & J. Chipman. 2015. Remote sensing and image interpretation 7th Edition. John Wiley & Sons. ISBN 9781118343289.

Lu, S., N. Ouyang, B. Wu, Y. Wei & Z. Tesemma. 2013. Lake water volume calculation with time series remote-sensing images. Int. J. Remote Sens. 34(22):7962–7973. https://doi.org/10.1080/01431161.2013.827814

Ma, M., X. Wang, F. Veroustraete & L. Dong. 2007. Change in area of Ebinur Lake during the 1998–2005 period. Int. J. Remote Sens. 28(24):5523–5533. https://doi.org/10.1080/01431160601009698

McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

McPherson, K.R., L.A. Freeman & L.E. Flint. 2011. Analysis of methods to determine storage capacity of, and sedimentation in, Loch Lomond Reservoir, Santa Cruz County, California, 2009. Scientific Investigations Report No. 2011–5141. U.S. Geological Survey. https://doi.org/10.3133/sir20115141

Mi, H., J. Zai & X. Jiang. 2007. Contrast and Analysis of Reservoir Storage Calculation Methods. Faculty of Land Resource Engineering. Kumming University of Science and Technology.

NASA. 2017. History Landsat Science. https://landsat.gsfc.nasa.gov/about/history/

Popielarczyk, D. & T. Templin. 2014. Application of integrated GNSS/hydroacoustic measurements and GIS geodatabase models for bottom analysis of Lake Hancza: the deepest inland reservoir in Poland. Pure Appl. Geophys. 171:997–1011. https://doi.org/10.1007/s00024-013-0683-9

QGIS Development Team. 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

Rana, H. & N. Neeru. 2017. Water Detection using Satellite Images Obtained through Remote Sensing. Adv. Comput. Sci. Technol. 10(6):1923-1940. https://www.ripublication.com/acst17/acstv10n6_37.pdf

Rojas, H.L., L.C. Alatorre, B. Stringam & Z. Samani. 2016. Topobathymetric 3D model of a shallow lagoon measured by a solar powered low-cost autonomous surface vehicle prototype in Cuauhtémoc, Chihuahua, Mexico. New Mexico Water Resources Research Institute.

Ruddick, K.G., V. De Cauwer, Y.J. Park & G. Moore. 2006. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol Ocean. 51(2):1167-1179. https://doi.org/10.4319/lo.2006.51.2.1167

Schmitt, T., N.C. Mitchell & A.T.S. Ramsay. 2008. Characterizing uncertainties for quantifying bathymetry change between time-separated multibeam echo-sounder surveys. Cont. Shelf

Res. 28(9):1166–1176. https://doi.org/10.1016/j.csr.2008.03.001

Servicio Meteorológico Nacional. 2017. Información Climatológica (1981-2010).

USGS. 2017. LandsatLook Viewer. https://landsatlook.usgs.gov/

USGS. 2017. SLC-off Products: Background | Landsat Missions.

Winter, T.C. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 7:28–45. https://doi.org/10.1007/s100400050178

Xu, H. 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27(14):3025–3033. https://doi.org/10.1080/01431160600589179

Descargas

Publicado

2018-11-12

Cómo citar

Rojas Villalobos, H. L., Alatorre Cejudo, L. C., Stringman, B., Samani, Z., & Brown, C. (2018). Topobathymetric 3D model reconstruction of shallow water bodies through remote sensing, GPS, and bathymetry: Reconstrucción de modelo 3D topobatimétrico de cuerpos de agua someros mediante teledetección, GPS y batimetría. TECNOCIENCIA Chihuahua, 12(1), 42–54. https://doi.org/10.54167/tch.v12i1.129
Metrics
Vistas/Descargas
  • Resumen
    211
  • PDF
    72
  • HTML
    17

Métrica