Inhibitory effects of Buddleja scordioides (salvilla) leaves on digestive enzymes and carbohydrate absorption in vivo

Efectos inhibidores de las hojas de Buddleja scordioides (salvilla) sobre las enzimas digestivas y la absorción de carbohidratos in vivo

Autores/as

DOI:

https://doi.org/10.54167/tch.v17i2.1221

Palabras clave:

planta medicinal, absorción de carbohidratos, antioxidante, Buddleja scordioides

Resumen

Se evaluaron los efectos de las infusiones de hojas de Buddleja scordioides (BsLI) sobre enzimas digestivas y la absorción de carbohidratos. El rendimiento de BsLI fue del 21.64 %. Además, se caracterizarón componentes químicos: ácidos hidroxibenzoicos, ácidos hidroxicinámicos, flavonoles, flavanonas y flavonas.  En estudios in vitro, se examinó cómo BsLI inhibe la lipasa, α-amilasa y α-glucosidasa. Luego, en ratas, se probó su efecto en la tolerancia oral al almidón (OSTT) a dosis de 9.5 mg/kg de peso corporal. Resultados indicaron moderada inhibición de lipasa y α-glucosidasa, y mayor inhibición de α-amilasa comparado con controles Durante la OSTT, el grupo con BsLI tuvo menor glucosa que el control negativo. Tras administrar BsLI, se detectaron compuestos bioactivos: naringenina, luteolina, quercetina y ácido cumárico. Además, BsLI fue seguro, con actividad antioxidante similar al Trolox. En conclusión, BsLI puede tener un efecto beneficioso sobre el metabolismo de la glucosa al inhibir la absorción de carbohidratos.

DOI: https://doi.org/10.54167/tch.v17i2.1221

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Apostolidis, E., Kwon, Y. I. & Shetty, K. 2007. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg .Technol. 8(1): 46-54. https://doi.org/10.1016/j.ifset.2006.06.001

Ardeshirlarijani, E., Namazi, N., B Jalili, R., Saeedi, M., Imanparast, S., Adhami, H. R., Faramarzi, M.A., Ayati, M.H., Mahdavi, M. & Larijani, B. 2019. Potential Anti-obesity effects of some medicinal herb: In vitro α-amylase, α-glucosidase and lipase inhibitory activity. Int. J. Biol. Biomed. 5(2): 2-8. http://ibbj.org/article-1-228-en.html

Awosika, T. O. & Aluko, R.E. 2019. Inhibition of the in vitro activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. 54(6): 2021-2034. https://doi.org/10.1111/ijfs.14087

Brand-Williams, W., Cuvelier, M.E., & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Coruh, N., Celep, A.S. & Özgökçe, F. 2007. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chem. 100(3): 1237-1242. https://doi.org/10.1016/j.foodchem.2005.12.006

Deng, N., Zheng, B., Li, T. & Liu, R.H. 2020. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties. Int. J. Mol. Sci. 21(4): 1175. https://doi.org/10.3390/ijms21041175

Estrada-Zúñiga, M.E., Gutiérrez-Rebolledo, G.A., Nieto-Trujillo, A., Bernabé-Antonio, A.& Sosa, F.C. 2019. Buddleja species distributed in Mexico against inflammatory diseases, their therapeutic activities, secondary metabolites and biotechnology. Adv. Biol. Res. 5: 78-98. https://stm1.bookpi.org/index.php/rabr-v5/article/view/375

Friedewald, W. T., Levy, R.I. & Fredrickson, D.S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6): 499-502. https://doi.org/10.1093/clinchem/18.6.499

Gutiérrez-Grijalva, E. P., Antunes-Ricardo, M., Acosta-Estrada, B. A., Gutiérrez-Uribe, J.A. & Heredia, J.B. 2019. Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Int. Food Res. J. 116: 676-686. https://doi.org/10.1016/j.foodres.2018.08.096

Gutiérrez-Rebolledo, G.A., Estrada-Zúñiga, M. E., Garduño-Siciliano, L., García-Gutiérrez, G. E., Mora, C.A.R., Calderón-Amador, J. & Cruz-Sosa, F. 2019. In vivo anti-arthritic effect and repeated dose toxicity of standardized methanolic extracts of Buddleja cordata Kunth (Scrophulariaceae) wild plant leaves and cell culture. J. Ethnopharmacol. 240: 111875. https://doi.org/10.1016/j.jep.2019.111875

Hwang, S.M., Lee, Y.J., Kim, E.J., Kim, H.Y., Li, X., Choi, Y.J., Cho, N.G., Lee, H.S. & Kang, D.G. 2009. Effect of Buddleja officinalis in Diabetic Atherosclerotic Mouse Model Using High Fat Diet. Korea J. Herbol. 24(4): 55-62. https://doi.org/10.6116/kjh.2009.24.4.055

Irondi, E.A., Angola, S.O. & Obligor, I.E. 2018. Inhibitory effects of tropical almond leaf extract on xanthenes oxidize, pancreatic lipase, and angiotensin 1-converting enzyme, in vitro. J. Food Biochem. 42(4): e12481. https://doi.org/10.1111/jfbc.12481

Kopp, W. 2019. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes.: Targets Ther. 12: 2221-2236. https://doi.org/10.2147/DMSO.S216791

Liu, Y. & Hu, M. 2002. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metabolism and Disposition 30(4): 370-377. https://doi.org/10.1124/dmd.30.4.370

Lunagariya, N.A., Patel, N.K., Jagtap, S.C. & Bhutani, K.K. 2014. Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI J. 13: 897 -921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464291/

Mai, T.T., Thu, N.N., Tien, P.G. & Van Chuyen, N. 2007. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci. Vitaminol. 53(3): 267-276. https://doi.org/10.3177/jnsv.53.267

McDougall, G.J., Kulkarni, N.N. & Stewart, D. 2009. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chemistry 115(1): 193-199. https://doi.org/10.1016/j.foodchem.2008.11.093

Moretti, E., Mazzi, L., Terzuoli, G., Bonechi, C., Iacoponi, F., Martini, S., Rossi, C. & Collodel, G. 2012. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod. Toxicol. 34, 651-657. https://doi.org/10.1016/j.reprotox.2012.10.002

Narita, Y. & Inouye, K. 2009. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. J. Agric. Food Chem. 57(19): 9218-9225. https://doi.org/10.1021/jf9017383

Nasri H. & Shirzad H. 2013. Toxicity and safety of medicinal plants. J HerbMed. Plarmacol. 2(2): 21-22. https://www.researchgate.net/publication/285306673_Toxicity_and_safety_of_medicinal_plants

National Institutes of Health (US). 2002. Office of Laboratory Animal Welfare, United States. Public Health Service. Public Health Service policy on humane care and use of laboratory animals. Office of Laboratory Animal Welfare, National Institutes of Health, Department of Health and Human Services. https://grants.nih.gov/grants/olaw/references/phspolicylabanimals.pdf

Norma Oficial Mexicana NOM-062-ZOO-1999. 1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf

OECD. 2001. Guidelines for Acute Toxicity of Chemicals. Organization for Economic Co-operation and Development No. 420. Published online Paris, France.

OECD. 2008. Guidelines for Repeated Dose 28-day Oral Toxicity Study in Rodents Organization for Economic Co-operation and Development No. 407. Published online Paris, France.

Patil, P., Mandal, S., Tomar, S.K. Anand, S. 2015. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 54, 863–880. https://doi.org/10.1007/s00394-015-0974-2

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Reagan‐Shaw, S., Nihal, M., Ahmad, N. 2008. Dose translation from animal to human studies revisited. FASEB J. 22, 659-661. https://doi.org/10.1096/fj.07-9574LSF

Robyt, J.F. 2008. in: Fraser-Ried, B. O., Tatsuta, K., Thiem, J., Cote´, G.L., (Eds.), Glycoscience, Springer-Verlag, Berlin, Heidelberg, Germany; 1437–1472.

Rocha-Guzmán, N. E., Simental-Mendía, L. E., Barragán-Zúñiga, L. J., Ramírez-España, J. C., Gallegos-Infante, J. A., Lujan-Mendoza, C. I., Gamboa-Gómez, C. I. (2018). Effect of Buddleja scordioides K. leaves infusion on lipid peroxidation in mice with ultraviolet light-induced oxidative stress. J. Med. Chem. 27, 2379-2385. https://doi.org/10.1007/s00044-018-2243-4

Santos-Cruz, L.F., Ávila-Acevedo, J.G., Ortega-Capitaine, D., Ojeda-Duplancher, J.C., Perdigón-Moya, J.L., Hernández-Portilla, L.B., López-Dionicio, H., Drán-Díaz, A., Dueñas-Gracía, I. E., Castañeda-Partida, L., García-Bores, A. M., Heres-Pulido, M. E. 2012. Verbascoside is not genotoxic in the ST and HB crosses of the Drosophila wing spot test, and its constituent, caffeic acid, decreases the spontaneous mutation rate in the ST cross. Food Chem. Toxicol., 50(3-4), 1082-1090. https://doi.org/10.1016/j.fct.2011.12.006

Silberberg, M., Besson, C., Manach, C., Remesy, C., Morand, C. 2006. Influence of dietary antioxidants on polyphenol intestinal absorption and metabolism in rats. J. Agric. Food Chem. 54, 3541-3546. https://doi.org/10.1021/jf060104e

Sok Yen, F., Shu Qin, C., Tan Shi Xuan, S., Jia Ying, P., Yi Le, H., Darmarajan, T., Gunasekaran, B., Salvamani, S. 2021. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid. Based Complement. Alternat Med. 2021. https://doi.org/10.1155/2021/2057333

Tamil, I.G., Dineshkumar, B., Nandhakumar, M., Senthilkumar, M., Mitra, A. 2010. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J. Pharmacol. 42, 280. https://doi.org/10.4103/0253-7613.70107

Tian, C., Liu, X., Chang, Y., Wang, R., Lv, T., Cui, C., Liu, M. 2021. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 137, 257-264. https://doi.org/10.1016/j.sajb.2020.10.022

Titlow WB. 2013. Characterization of Toxicological Properties of L-Lysine Polymers in CD-1 Mice. J. Microbiol. Biotechnol. 23, 1015-1022. https://doi.org/10.4014/jmb.1302.02055

VanderJagt, T.J., Ghattas, R., VanderJagt, D.J., Crossey, M., Glew, R.H. 2002, Comparison of the total antioxidant content of 30 widely used medicinal plants of New Mexico. Life Sci. 70, 1035-1040. https://doi.org/10.1016/S0024-3205(01)01481-3

Villegas-Novoa, C., Moreno-Jiménez, M.R., Rocha-Guzmán, N.E. 2020. Infusión de la planta medicinal Buddleja scordioides Kunth utilizada para tratar la inflamación intestinal. CienciaUAT. 14, 21. https://doi.org/10.29059/cienciauat.v14i2.1287

Williamson, G. 2013. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 57, 48-57. https://doi.org/10.1002/mnfr.201200511

Descargas

Publicado

2023-08-30

Cómo citar

Barragan-Zuñiga, L. J., Simental-Mendía, L. E. ., Herrera, M. D. ., González-Laredo, R. F., Gallegos-Infante, J. A. ., Salas-Pacheco, J. ., … Gamboa-Gomez, C. I. (2023). Inhibitory effects of Buddleja scordioides (salvilla) leaves on digestive enzymes and carbohydrate absorption in vivo: Efectos inhibidores de las hojas de Buddleja scordioides (salvilla) sobre las enzimas digestivas y la absorción de carbohidratos in vivo. TECNOCIENCIA Chihuahua, 17(2), e1221. https://doi.org/10.54167/tch.v17i2.1221
Metrics
Vistas/Descargas
  • Resumen
    290
  • PDF
    264
  • HTML
    18

Métrica