Valorización de la biomasa por medio de catálisis homogénea

Biomass valorization by homogeneous catalysis

Autores/as

DOI:

https://doi.org/10.54167/tch.v17i2.1200

Palabras clave:

biomasa, catálisis, homogénea, sustentable, metales, ácido levulínico

Resumen

Genéricamente podemos considerar a la biomasa como todo aquel material proveniente del crecimiento de microorganismos, plantas o animales, dicho material representa una fuente de residuos y en consecuencia de diversas moléculas de interés, las cuales pueden ser transformadas a otros productos de valor añadido y potencialmente útiles. Uno de los propósitos para su aprovechamiento sería el uso preferente de biomasa de desecho o en desuso, con lo cual se logra la disminución de residuos y el costo de las materias primas. De la hidrólisis de la biomasa se puede llegar a diversas moléculas o bloques de construcción entre los que se destacan, pero no se limitan al furfural y sus derivados, hasta llegar al ácido levulínico (AL). El AL es considerado como una plataforma química a partir de la cual se pueden realizar diversas transformaciones químicas y con ello preparar una gran variedad de productos útiles a nivel industrial y en la academia. Para lo anterior, el uso de metodologías catalíticas es otro aspecto deseable, ya que con ello se logra la disminución de subproductos, tiempos de reacción y consumo de energía. En este trabajo se resalta el uso de metales abundantes en la naturaleza para efectuar dichas transformaciones catalíticas.

DOI: https://doi.org/10.54167/tch.v17i2.1200

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alonso, D. M., Bond, J. Q. & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green chemistry 12(9): 1493-1513. https://doi.org/10.1039/C004654J

Alonso, D. M., Wettstein, S. G. & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15(3): 584-595. https://doi.org/10.1039/C3GC37065H

Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T. & Tumas, W. (2001). Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101(4): 953-996. https://doi.org/10.1021/cr000018s

Clement, M. J., Corma, A. & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 16(2): 516-547. https://doi.org/10.1039/C3GC41492B

Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6): 2411-2502. https://doi.org/10.1021/cr050989d

De Jong, E., Higson, A., Walsh, P. & Wellisch, M. (2020). Bio-based chemicals. IEA Bioenergy.

Dutta, S., Iris, K. M., Tsang, D. C., Ng, Y. H., Ok, Y. S., Sherwood, J. & Clark, J. H. (2019). Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal 372: 992-1006. https://doi.org/10.1016/j.cej.2019.04.199

Elangovan, S., Topf, C., Fischer, S., Jiao, H., Spannenberg, A., Baumann, W. & Beller, M. (2016). Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J. Am. Chem. Soc. 138(28): 8809-8814. https://doi.org/10.1021/jacs.6b03709

Gallezot, P. (2007). Catalytic routes from renewables to fine chemicals. Catal. Today 121(1-2): 76-91. https://doi.org/10.1016/j.cattod.2006.11.019

Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41(4): 1538-1558. https://doi.org/10.1039/C1CS15147A

Garduño, J. A. & García, J. J. (2018). Non-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary amines. ACS Catalysis 9(1): 392-401. https://doi.org/10.1021/acscatal.8b03899

Gulyaeva, E. S., Osipova, E. S., Buhaibeh, R., Canac, Y., Sortais, J. B., & Valyaev, D. A. (2022). Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord. Chem. Rev. 458: 214421. https://doi.org/10.1016/j.ccr.2022.214421

Huber, G. W. & Corma, A. (2007). Synergies between bio‐and oil refineries for the production of fuels from biomass. Angew. Chemie International Edition 46(38): 7184-7201. https://doi.org/10.1002/anie.200604504

IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught & A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by Chalk. S. J. https://doi.org/10.1351/goldbook.

Jurado‐Vázquez, T, Arévalo, A. & García, J. J. (2021). Transfer Hydrogenation of Levulinic Acid to γ‐Valerolactone and Pyrrolidones Using a Homogeneous Nickel Catalyst. Eur. J. Inorg. Chem. 5: 445-450. https://doi.org/10.1002/ejic.202001063

Kamm, B., Gruber, P. R. & Kamm, M. (2006). Biorefineries. Industrial processes and products. Wiley-VCH Verlag GmbH & Co. KGaA. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527619849

Kumaravel, S., Thiripuranthagan, S., Radhakrishnan, R., Erusappan, E., Durai, M., Devarajan, A. & Mukannan, A. (2019). Liquid phase esterification of levulinic acid into ethyl levulinate over sulphobenzylated nanoporous Al-SBA-15 catalyst. J. of Nanoscience and Nanotechnology 19(11):6965-6977. https://doi.org/10.1166/jnn.2019.16637

Liu, Z., Yang, Z., Wang, P., Yu, X., Wu, Y., Wang, H. & Liu, Z. (2019). Co-catalyzed hydrogenation of levulinic acid to γ-valerolactone under atmospheric pressure. ACS Sustain. Chem. Eng. 7(22): 18236-18241. https://doi.org/10.1021/acssuschemeng.9b04803

Mika, L. T. & Horváth, I. T. (2021). Homogeneous transition metal catalyzed conversion of levulinic acid to gamma-valerolactone. In Peter C. Ford & Rudi van Eldik (Eds.) Advances in Inorganic Chemistry 77 (pp. 1-25). Academic Press. https://doi.org/10.1016/bs.adioch.2021.02.004

Mika, L. T., Cséfalvay, E. & Németh, Á. (2018). Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118(2): 505-613. https://doi.org/10.1021/acs.chemrev.7b00395

Mukherjee, A., Nerush, A., Leitus, G., Shimon, L. J., Ben David, Y., Espinosa Jalapa, N. A. & Milstein, D. (2016). Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: a catalytic and mechanistic study. J. Am. Chem. Soc. 138(13): 4298-4301. https://doi.org/10.1021/jacs.5b13519

Ravelli, D. & Samori, C. (Eds.) (2021). Biomass Valorization: Sustainable Methods for the Production of Chemicals. John Wiley & Sons. https://www.wiley.com/en-au/Biomass+Valorization:+Sustainable+Methods+for+the+Production+of+Chemicals-p-9783527347179

Roa, D. A. & García, J. J. (2021) Mild reduction with silanes and reductive amination of levulinic acid using a simple manganese catalyst. Inorg. Chim. Acta 516: 120167. https://doi.org/10.1016/j.ica.2020.120167

Sortais, Jean-Baptiste (Ed.). (2021). Manganese catalysis in organic synthesis. John Wiley & Sons. ISBN: 978-3-527-34730-8. https://www.wiley-vch.de/en/areas-interest/natural-sciences/chemistry-11ch/catalysis-11ch4/manganese-catalysis-in-organic-synthesis-978-3-527-34730-8

Stegmann, P, Londo, M. & Junginger, M., (2020). The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X 6: 100029. https://doi.org/10.1016/j.rcrx.2019.100029

Valyaev, D. A., Lavigne, G. & Lugan, N. (2016). Manganese organometallic compounds in homogeneous catalysis: Past, present, and prospects. Coord. Chem. Rev. 308: 191-235. https://doi.org/10.1016/j.ccr.2015.06.015

Werpy, T. & Petersen, G. (Eds.) (2004). Top value-added chemicals from biomass: volume I--Results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004-1992). National Renewable Energy Lab. https://www.nrel.gov/docs/fy04osti/35523.pdf

Notas sobre las figuras.

Se informa lo siguiente para los efectos que proceda con los derechos de autor:

Figura 1. Creación propia

Figura 2. Adaptada de: Alonso, D. M., Bond, J. Q. & Dumesic, J. (2010). Catalytic conversion of biomass to biofuels. A. Green chem. 12(9): 1493-1513. https://doi.org/10.1039/C004654J

Figura 3. Adaptada de: Alonso, D. M., Wettstein, S. G. & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15(3): 584-595. https://doi.org/10.1039/C3GC37065H

Figura 4. Adaptada de: Kumaravel, S., Thiripuranthagan, S., Radhakrishnan, R., Erusappan, E., Durai, M., Devarajan, A. & Mukannan, A. J. (2019). Liquid Phase Esterification of Levulinic Acid into Ethyl Levulinate Over Sulphobenzylated Nanoporous Al-SBA-15 Catalyst. Nanosci. Nanotechnol. 19(11): 6965-6977. https://doi.org/10.1166/jnn.2019.16637

Figura 5. Creación propia

Figura 6. Creación propia

Descargas

Publicado

2023-08-31

Cómo citar

Roa, D., Arévalo, A., & García-Alejandre, J. (2023). Valorización de la biomasa por medio de catálisis homogénea: Biomass valorization by homogeneous catalysis. TECNOCIENCIA Chihuahua, 17(2), e1200. https://doi.org/10.54167/tch.v17i2.1200
Metrics
Vistas/Descargas
  • Resumen
    199
  • PDF
    165
  • HTML
    10

Métrica