Ariel, S., Askari, S., Scheffer, J.R., Trotter, J., 1989. Latent photochemical hydrogen abstraction
reactions realized in crystalline media. J. Org. Chem. 54, 4324–4330.
https://doi.org/10.1021/jo00279a019
Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F.,
Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A.,
Wieczorek-Ciurowa, K., 2013. Hallmarks of mechanochemistry: from nanoparticles to
technology. Chem. Soc. Rev. 42, 7571–7637. https://doi.org/10.1039/C3CS35468G
Beillard, A., Métro, T.X., Bantreil, X., Martinez, J., Lamaty, F., 2017. Cu(0), O2 and mechanical forces:
a saving combination for efficient production of Cu-NHC complexes. Chem. Sci. 8, 1086–1089.
https://doi.org/10.1039/C6SC03182J
Boldyrev, V. V., 1986. Mechanochemistry of Inorganic Solids. Proc. Indian Natl. Sci. Acad. Part A 52,
400–417.
Boldyreva, E., 2013. Mechanochemistry of inorganic and organic systems: What is similar, what is
different? Chem. Soc. Rev. 42, 7719–7738. https://doi.org/https://doi.org/10.1039/C3CS60052A
Bowmaker, G.A., 2013. Solvent-assisted mechanochemistry. Chem. Commun. 49, 334–348.
https://doi.org/DOI https://doi.org/10.1039/C2CC35694E
Braga, D., D’Addario, D., Giaffreda, S.L., Maini, L., Polito, M., Grepioni, F., 2005. Intra-solid and inter-
solid reactions of molecular crystals: A green route to crystal engineering. Top. Curr. Chem.
254, 71–94. https://doi.org/https://doi.org/10.1007/b100996
Braga, D., Grepioni, F., 2004. Reactions between or within molecular crystals. Angew. Chemie - Int.
Ed. 43, 4002–4011. https://doi.org/https://doi.org/10.1002/anie.200301721
Bučar, D.K., Friščić, T., 2019. Professor William Jones and His Materials Chemistry Group:
Innovations and Advances in the Chemistry of Solids. Cryst. Growth Des. 19, 1479–1487.
https://doi.org/https://doi.org/10.1021/acs.cgd.9b00090
Cheung, E., Kang, T., Scheffer, J.R., Trotter, J., 2000. Latent chemical behavior revealed in the
crystalline state: Novel photochemistry of a cis-9-decalyl aryl ketone. Chem. Commun. 2309–
2310. https://doi.org/https://doi.org/10.1039/B007398I
Friščić, T., 2010. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem.
20, 7599–7605. https://doi.org/https://doi.org/10.1039/C0JM00872A
Friščić, T., Childs, S.L., Rizvi, S.A.A., Jones, W., 2009. The role of solvent in mechanochemical and
sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation
outcome. CrystEngComm 11, 418–426. https://doi.org/https://doi.org/10.1039/B815174A
Friščič, T., Jones, W., 2009. Recent advances in understanding the mechanism of cocrystal formation
via grinding. Cryst. Growth Des. 9, 1621–1637.
https://doi.org/https://doi.org/10.1021/cg800764n
Friščić, T., Mottillo, C., Titi, H.M., 2020. Mechanochemistry for Synthesis. Angew. Chemie - Int. Ed.
59, 1018–1029. https://doi.org/https://doi.org/10.1002/anie.201906755
Garcia-Gabibay, M.A., 2003. Engineering carbene rearrangements in crystals: From molecular