Grünberger, O. (2005). El concepto de playa. In Grünberger A., Reyes-Gómez V.M., Janeau J. L. (eds)
Las playas del Desierto Chihuahuense (parte mexicana), Instituto de Ecología A.C.-IRD, Xalapa,
Mexico, 360 pp. ISBN: 970-709-048-0
Guo, H.M., Yang, S., Tang, X., Li, Y., & Shen, Z. (2008). Groundwater geochemistry and its
implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia.
Science of the Total Environment 393, 131–144. https://doi.org/10.1016/j.scitotenv.2007.12.025
Gutiérrez, M., Espino-Valdés, M. S., Alarcón-Herrera, M. T., Pinales-Munguía A., & Silva-Hidalgo,
H. (2021a). Arsénico y flúor en agua subterránea de Chihuahua: origen, enriquecimiento y
tratamientos posibles. Tecnociencia Chihuahua, XV(2), 95-108.
https://doi.org/10.54167/tecnociencia.v15i2.828
Gutiérrez, M., Calleros-Rincón, E. Y., Espino-Valdés M. S., & Alarcón-Herrera M. T. (2021b). Role of
nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water,
Air and Soil Pollution, 232(4), 1-13. https://doi.org/10.1007/s11270-021-05091-6
Hamlin, Q. F., Martin, S. I., Kendall, A. D., & Hyndman, D.W. (2022). Examining relationships
between groundwater nitrate concentrations in drinking water and landscape characteristics to
understand health risks. GeoHealth, 6, e2021GH000524.
He, X., Li, P., Ji, Y., Wang, Y., Su, Z. & Elumalai, V. (2020). Groundwater arsenic and fluoride and
associated arsenicosis and fluorosis in China: Occurrence, distribution and management.
Exposure and Health, 12:355-368. https://doi.org/10.1007/s12403-020-00347-8
Jiménez-Córdova, M. I., Sánchez-Peña, L. C., Barrera-Hernández, A., González-Horta, C., Barbier, O.
& Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in
an adult Mexican population. Science of the Total Environment 684, 621-628.
https://doi.org/10.1016/j.scitotenv.2019.05.356
Kumar, M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspectives, and
mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere,
249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126
Lee, J. I., Hong, S., Lee C., & Park, S. (2021). Fluoride removal by thermally treated egg shells with
high adsorption capacity, low cost, and easy acquisition. Environmental Science and Pollution
Research, 28, 35887-35901. https://doi.org/10.1007/s11356-021-13284-z
Márquez, M. A. O., Rivero, J. M. O., Herrera, M. T. A., Estrada, E. S., Vega-Mares, J. H., & Aragón, M.
C. V. (2020). Performance of a pilot subsurface flow treatment wetland system used for arsenic
removal from reverse osmosis concentrate, in the municipality of Julimes, Chihuahua, Mexico.
Ingeniería y Universidad, 24, 10. https://doi.org/10.11144/Javeriana.iued24.ppsf
McMahon, P. B., Brown C. J., Johnson T. D., Belitz K., & Lindsey B. D. (2020). Fluoride occurrence in
United States groundwater, Science of the Total Environment 732, 139217.
https://doi.org/10.1016/j.scitotenv.2020.139217
Mora, A., Torres-Martinez J. A., Moreau, C., Bertrand, G., & Mahlknecht J. (2021). Mapping
salinization and trace element abundance (including As and other metalloids) in the
groundwater of north-central Mexico using a double-clustering approach. Water Research,
205:117709. https://doi.org/10.1016/j.watres.2021.117709