Derome, D., Griffa, M., Koebel, M., & Carmeliet, J. (2011). Hysteretic swelling of wood at cellular
scale probed by phase-contrast X-ray tomography. Journal of Structural Biology, 173, 180-190.
https://doi.org/10.1016/j.jsb.2010.08.011
Derome, D., Rafsanjani, A., Hering, S., Dressler, M., Patera, A., Lanvermann, C., Sedighi-Gilani, M.,
Wittel, F. K., Niemz, P., & Carmeliet, J. (2013). The role of water in the behavior of wood. Journal
of Building Physics, 36(4), 398-421. https://doi.org/10.1177/1744259112473926
Derome, D., Zhang, C., Chen, M., & Carmeliet, J. (2018). Understanding swelling of wood through
multiscale modeling. Proceedings of the 7th International Building Physics Conference,
IBPC2018. Syracuse: USA. pp. 335-360. http://dx.doi.org/10.14305/ibpc.2018.be-9.06
Dickson, A., & Dawson, B. (2020). Using Cell Cross-section Dimensions and Digital Image
Correlation to Evaluate Drying Shrinkage and Collapse in Eucalyptus Nitens Wood.
BioResources, 15(3), 6149-6164. http://dx.doi.org/10.15376/biores.15.3.6149-6164
Dubey, M. K., Pang, S., & Walker, J. (2011). Effect of oil heating age on colour and dimensional
stability of heat treated Pinus radiate. European Journal of Wood and Wood Products, 69(2), 255-
262. http://dx.doi.org/10.1007/s00107-010-0431-0
El-Dabaa, R., & Abdelmoshen, S. (2019). HMTM: Hygromorphic-Thermobimetal Composites as a
Novel Approach to Enhance Passive Actuation of Adaptive Façades. 18th International
Conference, CAAD Futures 2019, Proceedings. Daejeon, Korea: Springer. 567- 577.
https://bit.ly/3EQ7w9P
Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the
physics of wood-water interactions. Wood Science and Technology, 47(1), 141-161.
https://doi.org/10.1007/s00226-012-0514-7
Fu, Z., Zhou, Y., Gao, X., Liu, H., & Zhou, F. (2019). Changes of water related properties in radiata
pine wood due to heat treatment. Construction and Building Materials, 227, 116692.
https://doi.org/10.1016/j.conbuildmat.2019.116692
Fuentes Salinas, M. (2000). Estimación del Punto de Saturación de la Fibra (PSF) de las maderas.
Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 6(1), 79-81. https://bit.ly/36W4O68
García Esteban, L. G., Gril, J., De Palacios, P., & Guindeo Casasús, A. (2005). Reduction of wood
hygroscopicity and associated dimensional response by repeated humidity cycles. Annals of
Forest Science, 62(3)275-284. http://dx.doi.org/10.1051/forest:2005020
Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A., & Rüggeberg, M. (2019). Analysis
of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science
Advances, 5, eaax 1311. https://doi.org/10.1126/sciadv.aax1311
Haag, V., Koch, G., Melcher, E., & Welling, J. (2020). Characterization of the wood properties of
Cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor
applications. Maderas. Ciencia y tecnología, 22(1), 23-36. http://dx.doi.org/10.4067/S0718-
221X2020005000103
Hanhijärvi, A., Ranta-Maunus, A., & Turk, G. (2005). Potential of strength grading of timber with
combined measurement techniques. Report of the Combigrade-project - phase 1. VTT Technical
Research Centre of Finland. Espoo: VTT Publications No. 568. https://bit.ly/3LpGW9M
Hansmann, C., Konnerth, J., & Rosner, S. (2012). Digital image analysis of radial shrinkage of fresh
spruce (Picea abies L.) wood. Wood Material Science & Engineering, 6(1-2), 2-6.
https://doi.org/10.1080/17480272.2010.515032
Hassankhani, M., Kord, B. & Pourpasha, M. M. (2015). Empirical statistical model for predicting
wood properties of Paulownia fortunie. Part 1: physical and biometrical properties. Maderas.
Ciencia y tecnología, 17(4), 919-930. http://www.redalyc.org/articulo.oa?id=48543004020