Medio ambiente y desarrollo sustentable  
Artículo arbitrado  
Actinomycetes as biological control agents  
of phytopathogenic fungi  
Los actinomicetos como agentes de control biológico  
de hongos fitopatógenos  
1,2  
1
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ  
Recibido: Febrero 23, 2009  
Aceptado: Junio 3, 2009  
Resumen  
Abstract  
Los actinomicetos son un reservorio enorme de antibióticos y  
metabolitos bioactivos y muchos de ellos son excelentes agentes  
de biocontrol para proteger a las plantas contra fitopatógenos.  
Aunque miles de antibióticos y metabolitos bioactivos han sido  
descritos, se cree que estos representan solo una fracción de  
los compuestos bioactivos producidos por los actinomicetos. En  
esta revisión se abordan las características generales y  
propiedades de los actinomicetos como agentes de control  
biológico, sus mecanismos a través de los cuales realizan el  
biocontrol y el impacto de la composición química de la pared  
celular de los hongos fitopatógenos en el proceso de control.  
Actinomycetes are an enormous reservoir for antibiotics and  
bioactive metabolites, and many are excellent biocontrol agents  
for use in protecting plants against phytopathogens. Although  
thousands of antibiotics and bioactive metabolites have been  
described, these are thought to represent only a small fraction  
of the bioactive compounds produced by actinomycetes. In  
this review, we summarize the general characteristics and  
properties of actinomycetes as biocontrol agents, the  
mechanisms through which the biocontrol occurs, as well as  
the impact of the phytopathogenic fungal cell wall composition  
in the control process.  
Palabras clave: Streptomyces, competencia, parasitismo,  
antibiosis.  
Keywords: Streptomyces, competition, parasitism, antibiosis.  
Introduction  
ctinomycetes are among the most widely distributed group of microorganisms in nature.  
They are found abundantly in cultivated and uncultivated soils, in various regions throughout  
the world (Goodfellow and Simpson, 1987; Goodfellow and Williams, 1983).  
A
Actinomycetes, especially streptomycetes,  
secondary metabolites of which some are  
antibiotics that are predominant in therapeutic  
and commercial importance (Alderson et al.,  
1993). Over one thousand secondary  
metabolites from actinomycetes were  
discovered during the years 1988-1992, and  
approximately 75% of these compounds were  
can degrade a wide diversity recalcitrant  
polymers occurring naturally in plant litter and  
soil, including hemicelluloses, pectin, keratin,  
and chitin (Gooday, 1990; Warren, 1996).  
Actinomycetes also have the genetic capability  
to synthesize several biologically active  
_
________________________________  
Profesor de la Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Ciudad Universitaria S/N Campus 1,  
Chihuahua, Chih., 31310, México.  
1
2
Dirección electrónica del autor de correspondencia: conzalez@uach.mx  
64  
• Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
produced by strains of the genus  
Streptomyces (Sanglier et al., 1993). The  
compounds isolated during this period of time  
belong to 46 chemical classes, demonstrating  
the chemical diversity of the secondary  
metabolites biosynthesized by actinomycetes.  
Some examples of bioactive compounds  
include anti-viral and anti-cancer compounds,  
modulators of immune responses, various  
enzyme inhibitors, as well as herbicides,  
insecticides, anti-fungal, and anti-helmintic  
compounds (Sanglier et al., 1993; Vining,  
their DNA (> 55 mol%). The group  
encompasses genera covering a wide range  
of morphologies extending from the coccus  
(Micrococcus) and rod-coccus cycle bacteria  
(e.g. Arthrobacter), through fragmenting hyphal  
forms (e.g. Nocardia), to genera with a  
permanent and highly differentiated branched  
mycelium (Micromonospora, Streptomyces  
and others). Some, but not all, genera form  
spores that range from motile zoospores to  
specialized propagules that resist desiccation  
and mild heat, but which do not have the  
organization and marked resistance properties  
of the bacterial endospore. The molecular  
classification of actinomycetes has been  
examined by Stackebrandt et al. (1997). All the  
actinomycete families were divided into ten  
suborders (Stackebrandt et al., 1997) (Table 1).  
1990).  
Morphology and taxonomy of  
actinomycetes  
Actinomycetes are Gram-positive bacteria  
with a high guanine plus cytosine content in  
Table 1. Hierarchic classification of the actinomycetes based on the phylogenetic  
analyses of the 16S rDNA sequence data (Stackebrandt et al., 1997).  
Class: Actinobacteria; Subclass: Actinobacteridae; Order: Actinomycetales  
Family  
Suborder  
Micrococcaceae, Brevibacteriaceae, Cellulomonadaceae,  
Micrococcineae  
Dermabacteriaceae, Dermatophilaceae, Intrasporangiaceae, Jonesiaceae,  
Microbacteriaceae, Promicromonosporaceae  
Actinomycineae  
Frankineae  
Actinomycetaceae  
Frankiaceae, Acidothermaceae, Geodermatophilaceae,  
Microsphaeraceae, Sporichthyaceae  
Propionibacterineae  
Streptomycineae  
Propionibacteriaceae, Nocardioidaceae  
Streptomycetaceae  
Corynebacteriaceae, Dietziaceae, Gordoniaceae, Mycobacteriaceae,  
Nocardiaceae, Tsukamurellaceae  
Corynebacterineae  
Micromonosporineae  
Streptosporangineae  
Pseudonocardineae  
Glycomycineae  
Micromonosporaceae  
Streptosporangiaceae, Nocardiopsaceae, Thermomonosporaceae  
Pseudonocardiaceae  
Glycomycetaceae  
65  
Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
By far, streptomycetes are the most  
abundant culturable actinomycete (Lee and  
Hwang, 2002). The genus Streptomyces  
belongs to the family Streptomycetaceae, a  
unique family of the suborder Streptomycineae.  
Streptomycetes grow as mycelial filaments in  
soil; their mature colonies may contain two  
types of mycelia, the substrate (vegetative)  
mycelium, and the aerial mycelium. Each has  
a different biological role (Hopwood, 1999).  
Vegetative mycelia absorb nutrients, and are  
composed of a dense and complex network of  
hyphae usually embedded in the soil or  
immobilize substrate. Once the cell culture  
becomes nutrient-limited, an aerial mycelium  
develops from the surface of the vegetative  
mycelium. The role of this type of mycelium is  
mainly reproductive; indeed, the aerial  
mycelium develops into spore chains as the  
mature stage in their life cycle (Hopwood,  
we must understand how they colonize the  
rhizosphere environment, and how they utilize  
the different mechanisms of biocontrol once  
they are established there. The rhizosphere is  
a special environment where the plant is the  
provider of nutrition to many life forms that are  
competing for life space. Information on the  
microflora present in the rhizosphere has been  
obtained primarily through isolation and  
cultivation of microorganisms from  
rhizosphere soils on laboratory media.  
However, more detailed descriptions of the  
microbial populations associated with roots are  
now possible with the use of molecular ecology  
methods such as repetitive elements-PCR  
(repPCR) (Schneider and De Brujin, 1996),  
denaturing gradient gel electrophoresis  
(DGGE) (Muyzer and Smalla, 1998;  
Williamson et al., 2000), and green fluorescent  
protein (GFP) (Gage et al., 1996). These  
methods examine unculturable as well as  
culturable organisms.  
1999). Both, reproductive and aerial mycelium  
along with clearly sporulation of some  
mesophilic Streptomyces strains are shown in  
Figure 1.  
Within the rhizosphere, plant roots have a  
direct effect on the composition and density of  
the soil microbial populations. Root exudates  
selectively influence the growth of bacterial and  
fungal populations by altering the presence of  
substrates in soil in the vicinity of roots  
Actinomycetes as biological  
control agents  
Besides the enormous numbers of  
agroactive metabolites produced by  
actinomycetes (Tanaka and Omura, 1993), they  
also play an important role in agriculture as  
biocontrol agents. Antagonism against an  
extensive variety of plant pathogens has been  
reported (Bressan, 2003; Chamberlain and  
Crawford, 1999; Doumbou et al., 2002;  
Tahvonen and Avikainen, 1987; Trejo-Estrada  
et al., 1998a; Yuan and Crawford, 1995). A  
microorganism that colonizes roots is ideal for  
use as a biocontrol agent against soil-borne  
diseases (Weller, 1988). Actinomycetes,  
especially Streptomyces, are qualitatively and  
quantitatively important in the rhizosphere  
where they actively colonize plant root systems  
(
2
Grayston et al., 1996; Yang and Crowley,  
000). Plant root exudates contain sugars,  
amino acids, organic acids, fatty acids, sterols,  
vitamins, nucleotides, and other compounds  
(
Jaeger et al., 1999; Smucker, 1993). The  
specific varieties of organic compounds  
released by different plants have been  
postulated to be a key factor influencing the  
diversity of microorganisms in the rhizosphere  
of different plant species (Buyer et al., 2002;  
Doumbou et al., 2002; Grayston et al., 1996;  
Grayston et al., 1998). There is also evidence  
that production of root exudates can be up  
regulated in the presence of certain nutrients.  
For example, citrate, malate, and related  
organic acids are over excreted by wheat and  
(Crawford et al., 1993; Doumbou et al., 2001;  
3+  
maize in response to high Al concentrations  
Ma et al., 2001). The microflora present on  
Tokala et al., 2002). To better understand how  
these bacteria may act as biocontrol agents,  
(
66  
• Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
Figure 1. Microscopic morphological structures of S.hygroscopicus strainsAZ529 (A-C),AZ541  
(D-F), AZ560 (G) and S. lydicus WYEC108 (H).All the strains showed the spore chain  
morphology (s) in compact long spirals, except for S. lydicus WYCED-108, which  
showed flexuous chains of spores. Substrate mycelia is also showed (m).  
Photographs by Ana C. Gonzalez-Franco  
67  
Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
the roots can also influence the amount of root  
exudates produced. Rhizosphere-colonizing  
bacteria referred to as plant growth-promoting  
rhizobacteria (PGPR) can also influence the  
nutritional status of the rhizosphere in several  
ways. For example, many PGPR are able to  
produce plant growth hormones such as  
auxins (Brandl et al., 2001). Thus, the  
rhizosphere is a dynamic habitat rich in  
microorganisms and in plant microbe  
interactions, some of which are beneficial to  
the microbes and plants, and some of which  
are detrimental to one and/or the other. For  
example, root exudates from peas susceptible  
to Fusarium oxysporum stimulated the fungus  
in pure culture, but also caused many  
rhizosphere isolates to antagonize the  
pathogen (Rovira, 1965).  
synthesis of particular extracellular enzymes,  
and the degradation of phytotoxins (Lewis and  
Starkey, 1969; Tokala et al., 2002; Trejo-Estrada  
et al., 1998a). There are three mechanisms  
known to be involved in this disease-suppression  
phenomenon.  
Antibiosis. Antibiosis occurs when the  
antagonist (biocontrol agent) colonizes the  
rhizosphere and produces one or more  
substances that inhibits or kills the pathogen.  
Antibiosis by root-colonizing actinomycetes has  
been studied in several systems (Chamberlain  
and Crawford, 1999; Crawford et al., 1993;  
Rothrock and Gottlieb, 1984; Trejo-Estrada et  
al., 1998a). There is evidence that antibiotics  
are indeed produced in soil, and they have been  
implicated in the biocontrol of pathogens in situ.  
Rhothrock and Gottlieb (1984) tested  
Streptomyces hygroscopicus var. geldanus, a  
producer of geldanamycin, in soil pots for its  
ability to control Rhizoctonia root rot of pea. Soil  
antibiotic extraction was quantified and the  
presence of antibiotic was correlated with  
pathogen control. Amended soils with  
geldanamycin in amounts equivalent to that  
produced in vivo by the streptomycete also  
controlled the disease (Rothrock and Gottlieb,  
Mechanisms for biological  
control of plant pathogens  
Interest in biocontrol of plant pathogens  
has increased considerably over the past  
years, partly as a response to public concern  
about the use of hazardous chemical  
fungicides and pesticides such as methyl  
bromide, but also because it may provide  
control of diseases that cannot, or can only  
partially, be managed by other control  
strategies (Cook, 1993). Many studies on the  
biocontrol of phytopathogens focus on the  
suppressive effects of single biocontrol strains  
on specific fungal pathogens.  
1
984). Similarly, Trejo-Estrada (1998) tested  
Streptomyces violaceusniger YCED9,  
producer of nigericin, geldanamicin and a  
complex of macrocyclic lactone antibiotics, in  
greenhouse experiments to control Rhizoctonia  
solani and Sclerotinia homeocarpa (causative  
agents of grass seedling and crown-foliar  
disease, respectively). Partial control of the  
pathogen was associated with production of  
antibiotics, one of which (nigericin) could be  
extracted from the soil (Trejo-Estrada et al.,  
Biocontrol of plant diseases, especially of  
fungal origin, has been achieved using  
microorganisms such as Trichoderma sp.,  
Pseudomonas sp., Bacillus sp., and  
Streptomyces sp. (Elad et al., 1980; Ligon et  
al., 2000; Raaijmakers et al., 2002; Trejo-  
Estrada et al., 1998a). Streptomycetes, along  
with other bacterial strains belonging to the  
Actinomycetales, have several properties that  
give them the ability to act as effective  
biocontrol agents in the rhizosphere, including  
the ability to colonize plant root surfaces,  
antibiosis against plant root pathogens, the  
1
998b). Another study in the same  
Streptomyces species showed that a mutant  
of the strain defective in the production of  
geldanamycin lost the ability to control the  
disease (Beausejour et al., 2001).  
Competition for nutrition and space. There  
are cases where mutants of biocontrol strains  
that are deficient in the production of  
68  
• Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
antimicrobial substances are almost as efficient  
in biocontrol as the wild type strains (Kempf  
and Wolf, 1989). This mechanism of biocontrol  
is related to the colonization ability and other  
competitive traits of the biocontrol agent. The  
ability to use a specific compound as an energy  
source that not all microorganisms are able to  
use, for example, can provide a competitive  
advantage to the biocontrol agent. Also, the  
ability to use and out compete pathogens for  
inorganic compounds is another important  
aspect, which would determine whether a  
potential biocontrol agent will be successful or  
not in suppressing a pathogen. Iron is one of  
the resources that can limit growth of plant  
pathogens and one well-known source for  
nutrient competition in the rhizosphere (Douling  
and O’Gara, 1994). By sequestering iron away  
from invading pathogens, the root-colonizing  
biocontrol strain prevents it from invading and  
colonizing the plant roots.  
2002; Valois et al., 1996) by a biocontrol agent.  
These hydrolases initiate the process of  
physical destruction of the fungal cell walls  
(FCW) (Adams, 1990).As was mention above,  
actinomycetes have the ability to produce a  
wide variety of extracellular enzymes that  
allows them to degrade various biopolymers  
in soil. Numerous correlations between fungal  
antagonism and bacterial production of  
chitinases or glucanases have been noted  
(Gonzalez-Franco et al., 2003). Also, mature  
composts amended with chitin residues  
acquire suppressive properties against fungal  
plant pathogens. The microbial population of  
one such suppressive compost was  
characterized, and mainly Gram-positive  
bacteria belonging to the actinomycetes were  
found (Labrie et al., 2001). To have more  
insight in the correlation of fungal  
mycoparasitism and bacterial production of  
lytic enzymes, knowledge of the composition  
of the FCW is required, and enzymes from  
known antifungal biocontrol agents need to be  
isolated and characterized for the mycolytic  
activities.  
Streptomycetes, along with other bacterial  
strains belonging to the Actinomycetales have  
the ability to colonize plant root surfaces  
(Kortemaa et al., 1994; Tokala et al., 2002).  
Also, they have the capacity to synthesize  
extracellular enzymes that allow them to use  
recalcitrant organic compounds as energy  
sources and to degrade phytotoxin compounds  
Components of fungal cell walls  
Fungal cell walls are made of fibrillar  
polysaccharides (structural components)  
including chitin, cellulose or other β-glucans,  
embedded in a matrix of amorphous  
components (cementing components) that  
include polysaccharides, lipids, and proteins  
that maintain the organization of the whole  
structure (Ruiz-Herrera, 1992). Some of these  
components are chemically associated via  
covalent bonds, although hydrogen bonding  
and hydrophobic associations are also  
important in the configuration of the resulting  
structure (Garret and Grisham, 1998; Gooday,  
(
Goodfellow and Williams, 1983; Lewis and  
Starkey, 1969; McCarthy and Williams, 1992).  
Streptomycetes have the ability to produce iron-  
chelating compounds, siderophores, that  
starve pathogens for iron (Tokala et al., 2002).  
The ability to produce siderophores as a  
mechanism gives the biocontrol agent a  
competitive advantage in environments, such  
as rhizospheres, where soluble iron is scarce  
(Mullen, 2004).  
Parasitism. Parasitism is the third  
1990; Ruiz-Herrera, 1992).  
mechanism of phytopathogen biocontrol.  
Mycoparasitism of fungal pathogens can  
sometimes be attributed to the production of  
extracellular lytic enzymes such as chitinases  
Fungal cell walls are made mostly of  
polysaccharides, which comprise typically  
about 80-90% of their dry weight (Bartnicki-  
Garcia, 1968). Proteins, lipids, pigments (e.g.  
melanins), and inorganic salts are present in  
smaller amounts (Ruiz-Herrera, 1992).  
(Berg et al., 2002; Chernin et al., 1995; Lorito  
et al., 1996) and β-1,3 glucanases (Berg et al.,  
69  
Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
Bartnicki-Garcia found that cell walls from fungi  
could be grouped into eight different  
chemotypes according to their polysaccharide  
composition (Bartnicki-Garcia, 1968). This  
author suggested an evolutionary pathway to  
explain the divergence of the wall chemotypes  
form, whereas in others, the opposite occurs.  
In the case of Candida albicans, there is higher  
amount of chitin present in the cell walls of the  
mycelial (invasive) form of the fungus that is  
associated to animal pathogenesis, since data  
suggest that adhesive properties of invasive  
mycelial cells are dependent, at least in part,  
on the chitin present in the cell wall (Lehrer,  
1986). The yeast form of C. albicans is included  
in group VI of Bartnicki-Garcia (Table 2), which  
comprises the yeast forms of the Ascomycetes  
and Deuteromycetes. Glucans comprise  
cellulose made of β-1,4 bonded glucose units,  
and noncellulosic glucans containing variable  
proportions of β-1,3 and β-1,6 linkages, and á-  
1,3 glucans. The noncellulosic glucan type is  
the most abundant form in fungal cell wall  
chemotypes (Table 2). Some polysaccharides  
are characteristic of specific fungal groups, for  
example chitosan. This deacetylated analog of  
chitin has been found to be a characteristic  
component of the cell walls from Zygomycetes  
(Table 2). Biocontrol agents that have the ability  
to mycoparasitize fungal pathogens generally  
produce a variety of hydrolytic enzymes active  
against multiple cell wall components.  
(
(
Table 2). By far, the most numerous category  
including most of the pathogens of plants) is  
the group V (chitin-glucan), harboring all  
mycelial forms of the Ascomycetes,  
Basidiomycetes, and Deuteromycetes. The  
Chytridiomycetes, are also included (Table 2).  
Chitin is the most characteristic polysaccharide  
of the fungal cell walls. It is an unbranched  
polysaccharide made of N-acetylglucosamine  
(GlcNAc) joined through β-1,4 bonds. Chitin  
was once thought to be absent in Oomycetes;  
however, traces of chitin are actually present  
in the cell walls of members of this fungal  
group, including pathogens such as  
Phytophthora, and Pythium species (Dietrich,  
1
973). Differences in the content of chitin  
between both morphologies of dimorphic fungi  
have been noticed. However, these differences  
appear unrelated to either morphology. Some  
species contain more chitin in the mycelial  
Table 2. Chemotypes of fungal cell walls (Bartnicki-Garcia, 1968).  
Taxonomic group  
Chemotype  
I
Cellulose-glycogen  
Acrasiales  
II Cellulose-glucan  
III Cellulose-chitin  
IV Chitosan-chitin  
Oomycetesa  
Hyphochytridiomycetes  
Zygomycetes  
V
Chitin-glucan  
Chytridiomycetes, Euascomycetes, Homobasidiomycetes and Deuteromycetes  
VI Mannan-glucanb  
VII Mannan-chitin  
Hemiascomycetes  
Heterobasidiomycetes  
VIII Polygalactosamine-galactan Trichomycetes  
a
b
Incompletely characterized; probably β-1,3- and β-1,6-linked.  
Chitin is present in low amounts  
70  
• Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
Conclusion remarks  
BRANDL, M. T., Quinones, B. and Lindow, S. (2001).  
Heterogeneous transcription of an indoleacetic acid  
biosynthetic gene in Erwinia herbicola on plant surfaces.  
PNAS 98: 3454-3459.  
The control of plant diseases is an urgent  
need for sustainable agriculture. The  
application of agrochemicals for this purpose,  
while still an important method in agricultural  
practices, is not without its problems, such as  
environmental pollution and detrimental effects  
on non-target organisms. Streptomyces  
species as biological control agents offer a  
much needed alternative to the use of synthetic  
agrochemicals. They produced the natural  
antibiotics within the microhabitat of the  
rhizosphere being less polluting and less  
stressful on indigenous microbes compared  
with chemical fungicides. They also have the  
ability to colonize plant root surfaces protecting  
the plant for pressure of plant pathogens.  
These biological control agents compete for  
nutrients and space with plant pathogens; they  
also synthesize extracellular enzymes that  
attack the phytopathogenic fungal cell walls and  
they have the ability to produce descant-  
resistant spores to survive under water  
deficiency. All the properties exhibited by  
actinomycetes, especially those that belong to  
the genus Streptomyces as biological control  
agents of fungal phytopathogens, not only give  
us a better understanding in their environmental  
and ecological benefits, but also in their impact  
as an attractive alternative for use in  
agriculture.  
BRESSAN, W. (2003). Biological control of maize seed pathogenic  
fungi by use of actinomycetes. BioControl 48: 233-240.  
BUYER, J. S., Roberts, D. P. and Russek-Cohen, E. (2002). Soil  
and plant effects on microbial community structure. Can. J.  
Microbiol. 48: 955-964.  
CHAMBERLAIN, K. and Crawford, D. L. (1999). In vitro and in vivo  
antagonism of pathogenic turfgrass fungi by Streptomyces  
hygroscopicus strains YCED9 and WYE53. J of Industrial  
Microbiol and Biotech 23: 641-646.  
CHERNIN, L. Z., Z., I., S., H. and Chet, I. (1995). Chitinolytic  
Enterobacter agglomerans antagonistic to fungal plant  
pathogens. Appl. Environ. Microbiol. 61: 1720-1726.  
COOK, R. J. (1993). Making greater use of introduced  
microorganisms for biological control of plant pathogens. Ann.  
Rev. Phytopathol. 31: 53-80.  
CRAWFORD, D. L., Lynch, J. M., Whipps, J. M. and Ousley, M. A.  
(1993). Isolation and characterization of actinomycete  
antagonists of a fungal root pathogen. Appl. Environ.  
Microbiol. 59: 3899-3905.  
DIETRICH, S. M. C. (1973). Carbohydrates from the hyphal walls  
of some oomycetes. Biochim Biophys Acta 313: 95-98.  
DOULING, D. N. and O’Gara, F. (1994). Metabolites of Pseudomonas  
involved in the biocontrol of plant diseases. Trends in  
Biotechnology 12: 133-141.  
DOUMBOU, C.-L.,Akimov, V., Cote, M., Charest, P. M. and Beaulieu,  
C. (2001). Taxonomic study on nonpathogenic  
streptomycetes isolated from common scab lesions on potato  
tubers. Syst. Appl. Microbiol. 24: 451-456.  
DOUMBOU, C.-L., Hamby-Salove, M. K., Crawford, D. L. and  
Beaulieu, C. (2002).Actinomycetes, promising tools to control  
plant diseases and to promote plant growth. Phytoprotection  
82: 85-102.  
ELAD, Y., Chet, I. and Katan, Y. (1980). Trichoderma harzianum  
a biocontrol agent effective against Sclerotium rolfsii and  
Rhizoctonia solani. Phytopathology 70: 119-121.  
GAGE, D. J., Bobo, T. and Long, S. R. (1996). Use of green  
fluorescent protein to visualize the early events of symbiosis  
between Rhizobium melilotti and alfalfa (Medicago sativa).  
J. Bacteriol. 178: 7159-7166.  
GARRET, R. H. and Grisham, C. M. (1998). Carbohydrates. In  
Biochemistry, pp. 209-237. Saunders College Publishing,  
Orlando.  
References  
GONZALEZ-FRANCO,A. C., Deobald, L.A., Spivak,A. and Crawford,  
D. L. (2003). Actinobacterial chitinase-like enzymes: profiles  
of rhizosphere versus non-rhizosphere isolates. Can. J.  
Microbiol 49: 683-698.  
GOODAY, G. W. (1990). The ecology of chitin decomposition. Adv.  
Microb. Ecol. 11: 387-430.  
GOODFELLOW, M. and Simpson, K. E. (1987). Ecology of  
streptomycetes. Frontiers in Applied Microbiology 2:97-125.  
GOODFELLOW, M. and Williams, S. T. (1983). Ecology of  
actinomycetes. Ann. Rev. Microbiol. 37: 189-216.  
GRAYSTON, S. J., Vaughan, D. and Jones, D. (1996). Rhizosphere  
carbon flow in trees, in microbial activity and nutient  
availability. Applied Soil Ecology 5: 29-56.  
ADAMS, P. B. (1990). The potential of mycoparasites for biological  
control of plant diseases. Ann. Rev. Phytopathol. 28: 59-72.  
ALDERSON, G., Ritchie, D.A., Cappellano, C., Cool, R. H., Ivanova,  
N. M., Huddleston, A. S., Flaxman, C. S., Kristufek, V. and  
Lounes, A. (1993). Physiology and genetics of antibiotic  
production and resistance. Res. Microbiol. 144: 665-672.  
BARTNICKI-GARCIA, S. (1968). Cell wall chemistry, morphogenesis,  
and taxonomy of fungi. Ann. Rev Microbiol 22: 87-108.  
BEAUSEJOUR, J., Agbessi, S. and Beaulieu, C. (2001).  
Geldanamycin producing strains as biocontrol agents against  
common scab of potato. Can. J. Microbiol. 23: 194.  
BERG, G., Roskot, N., Steidle, A., Eberl, L., Zockand, A. and  
Smalla, K. (2002). Plant-dependent genotypic and phenotypic  
diversity of antagonistic rhizobacteria isolated from different  
Verticillium host plants. Appl. Environ. Microbiol. 68: 3328-  
GRAYSTON, S. J., Wang, S., Campbell, C. D. and Edwards, A. C.  
(
1998). Selective influence of plant species on microbial  
diversity in the rhizosphere. Soil. Biol. Biochem. 30: 369-  
78.  
3
338.  
3
71  
Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
SANGLIER, J. J., Haag, H., Juck, T. A. and Fehr, T. (1993). Novel  
HOPWOOD, D. A. (1999). Forty years of genetics with  
bioactive compounds from actinomycetes: a short review  
Streptomyces: from in vivo through in vitro to in silico.  
Microbiol. 145: 2183-2202.  
(
1988-1992). Res. Microbiol. 144: 633-642.  
SCHNEIDER, M. and De Brujin, F. J. (1996). Rep-PCR mediated  
genomic fingerprinting of rhizobia and computer-assisted  
phylogenetic pattern analyses. World Journal of  
Microbiology and Biotechnology 12: 163-174.  
SMUCKER, A. J. M. (1993). Soil Environmental Modifications of  
Root Dynamics and Measurement. Annual Review of  
Phytopathology 31: 191-218.  
STACKEBRANDT, E., Rainey, F. A. and Ward-Rainey, N. L. (1997).  
Proposal for a new hierarchic classification system,  
Actinobacteria classis nov. International Journal of  
Systematic Bacteriology 47: 479-491.  
TAHVONEN, R. and Avikainen, H. (1987). The biological control of  
seedborne Alternaria brassicicola of cruciferous plants with  
a powdery preparation of Streptomyces sp. J. Agric. Sci.  
Finl. 59: 199-208.  
JAEGER, C. H., III, Lindow, S. E., Miller, W., Clark, E. and Firestone,  
M. K. (1999). Mapping of Sugar and AminoAcidAvailability in  
Soil around Roots with Bacterial Sensors of Sucrose and  
Tryptophan. Appl. Environ. Microbiol. 65: 2685-2690.  
KEMPF, H. J. and Wolf, G. (1989). Erwinia herbicola as a biocontrol  
agent of Fusarium culmorum and Puccinia recondita f. sp.  
tritici on wheat. Phytopathology 79: 990-994.  
KORTEMAA, H., Rita, H., Haahtela, K. and Smolander, A. (1994).  
Root-coolonization ability of antagonistic Streptomyces  
griseoviridis. Plant Soil 163: 77-83.  
LABRIE, C., Leclerc, P., Cote, N., Roy, S., Brezinski, R., Hogue, R.  
and Beaulieu, C. (2001). Effect of chitin waste based  
composts produced by two phases composting on two  
oomycete plant pathogens. Plant Soil 235: 27-34.  
LEE, J. Y. and Hwang, B. K. (2002). Diversity of antifungal  
actinomycetes in varios vegetative soils of Korea. Can. J.  
Microbiol. 48: 407-417.  
TANAKA, Y. and Omura, S. (1993). Agroactive compunds of  
microbial origin. Ann. Rev. Microbiol. 47: 57-87.  
TOKALA, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Hamby  
Salove, M., Deobald, L. A., Bailey, J. F. and Morra, M. J.  
LEWIS, J. A. and Starkey, R. L. (1969). Decomposition of plant  
tannins by some soil micro-organisms. Soil Sci. 107: 235-  
(
2002). Novel plant-microbe rhizosphere interaction involving  
2
41.  
Streptomyces lydicus WYEC-108 and the pea plant (Pisum  
sativum). Applied and Environmental Microbiology 68: 2161-  
LIGON, J. M., Hill, D. S., Hammer, P. E., Torkewitw, N. R., Hofman,  
D., Kempt, H.-J. and van Pee, K.-H. (2000). Natural products  
with antifungal activity from Pseudomonas biocontrol  
bacteria. Pest Management Science 56: 688-695.  
2
171.  
TREJO-ESTRADA, S. R., Paszczynski, A. and Crawford, D. L.  
1998a). Antibiotics and enzymes produced by the biocontrol  
(
LORITO, M., Farkas, V., Rebuffat, S., Bodo, B. and Kubicek, C.  
agent Streptomyces violaceusniger YCED-9. J. of Industrial  
Microbiol and Biotech 21: 81-90.  
TREJO-ESTRADA, S. R., Rivas-Sepulveda, I. and Crawford, D. L.  
(
1996). Cell wall synthesis is a major target of mycoparasitic  
antagonism by Trichoderma harzianum. J. Bacteriol. 178:  
382-6385.  
6
(
1998b). In vitro and in vivo antagonism of Streptomyces  
MA, J. F., Ryan, P. R. and Delhaize, E. (2001).Aluminum toletance  
in plants and the complexing role of organic acids. Trends  
Plant Sci. 6: 273-278.  
MCCARTHY, A. J. and Williams, S. T. (1992). Actinomycetes as  
agents of biodegration in the enviroment - a review. Gene  
violaceusniger YCED-9 against fungal pathogens of  
turfgrass. World Journal of Microbiology and Biotechnology  
1
4: 865-872.  
VALOIS, D., Fayad, K., Barasubiye, T., Garon, M., Dery, C.,  
Brzezinski, R. and Beaulieu, C. (1996). Glucanolytic  
actinomycetes antagonistic to Phytophthora fragariae var.  
rubi, the causal agent of raspberry root rot. Appl. Environ.  
Microbiol. 62: 1630-1635.  
VINING, L. C. (1990). Functions of secondary metabolites. Ann.  
Rev. Microbiol. 44: 395-427.  
WARREN, R.A. J. (1996). Microbial hydrolysis of polysaccharides.  
Ann. Rev. Microbiol. 50: 183-212.  
115: 189-192.  
MULLEN, M. D (2004).Transformations of phosphorus and other  
elements. In Principles and applications of soil microbiology  
(ed. D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel and D.A. Zuberer),  
pp. 369-386. Prentice Hall, New Jersey.  
MUYZER, G. and Smalla, K. (1998). Application of denaturing  
gradient gel electrophoresis (DGGE) and temperature gradient  
gel electrophoresis (TGGE) in microbial ecology. Antonie Van  
Leeuwenhoek 73: 127-141.  
RAAIJMAKERS, J. M., Vlami, M. and de Souza, J. T. (2002).Antibiotic  
production by bacterial biocontrol agents. Antonie Van  
Leeuwenhoek 81: 537-547.  
ROTHROCK, C. S. and Gottlieb, D. (1984). Role of antibiosis in  
antagonism of Streptomyces hygroscopicus var. geldanus  
to Rhizoctonia solani in soil. Can. J. Microbiol. 30: 1440-  
WELLER, D. M. (1988). Biological control of soil borne plant  
pathogens in the rhizosphere with bacteria. Ann. Rev.  
Phytopathol. 26: 379-407.  
WILLIAMSON, N., Brian, P. and Wellington, E. M. (2000). Molecular  
detection of bacterial and streptomycete chitinases in the  
environment. Antonie Van Leeuwenhoek 78: 315-21.  
YANG, C.-H. and Crowley, D. E. (2000). Rhizosphere microbial  
community structure in relation to root location and plant iron  
nutritional status. Appl. Environ. Microbiol. 66: 345-351.  
YUAN, W. M. and Crawford, D. L. (1995). Characterization of  
Streptomyces lydicus WYEC108 as a potential biocontrol  
agent against fungal root and seed rots. Applied and  
Environmental Microbiology 61: 3119-3128.  
1
447.  
ROVIRA, A. D. (1965). Interactions between plant roots and soil  
microorganisms. Annual Review of Microbiology 19: 241-  
2
66.  
RUIZ-HERRERA, J. (1992). Fungal cell wall: structure, synthesis,  
and assembly. CRC Press, Boca Raton, Fla.  
72  
• Vol. III, No. 2 • Mayo-Agosto 2009 •  
ANA CECILIA GONZÁLEZ-FRANCO Y LORETO ROBLES HERNÁNDEZ: Actinomycetes as biological control agents of  
phytopathogenic fungi  
Este artículo es citado así:  
González-Franco A. C. y L. Robles-Hernández. 2009: Actinomycetes as biological control agents of  
phytopathogenic fungi. TECNOCIENCIA Chihuahua 3(2): 64-73.  
Resúmenes curriculares de autor y coautores  
ANA CECILIA GONZÁLEZ-FRANCO. Es profesora-investigadora de la Facultad de Ciencias Agrotecnológicas de la UniversidadAutónoma de  
Chihuahua (UACH). Obtuvo su licenciatura en la Facultad de Ciencias Químicas, su maestría en la Facultad de Ciencias  
Agrotecnológicas de la Universidad Autónoma de Chihuahua y su doctorado en Microbiología, Biología Molecular y Bioquímica lo  
obtuvo en la Universidad de Idaho, USA. Su área de investigación se centra en el control biológico de enfermedades y en la  
interacción-microorganismo-planta. Imparte las cátedras de Interacción Microorganismo Planta, Bioquímica, Química y Biotecnología.  
Asesora estudiantes de licenciatura y posgrado. Es responsable del área de microbiología aplicada y biología molecular en el  
Laboratorio de Microbiología Aplicada, Fitopatología y Fisiología Post-cosecha de la Facultad de Ciencias Agrotecnológicas,  
UACH.  
LORETO ROBLES-HERNÁNDEZ. Es profesor-investigador de la Facultad de Ciencias Agrotecnológicas de la Universidad Autónoma de  
Chihuahua. Obtuvo su licenciatura en 1992, su maestría en 1994 en la misma institución y su doctorado en la Universidad de Idaho,  
USA en 2004. Su investigación se centra en la epidemiología de enfermedades de plantas, con énfasis en aquellas causadas por  
virus y por bacterias fitopatógenas. Imparte los cursos de Fitopatología, Microbiología, Control Biológico y Fisiología Post-cosecha.  
Asesora estudiantes de licenciatura y maestría. Está a cargo del área de fitopatología y fisiología post-cosecha en el laboratorio  
de Microbiología Aplicada, Fitopatología y Fisiología de Post-cosecha de la Facultad de Ciencias Agrotecnológicas, UACH.  
73  
Vol. III, No. 2 • Mayo-Agosto 2009 •