Salud  
Artículo arbitrado  
Cypermethrin, deltamethrin and  
glyphosate affect the activity of the  
2
+
Ca -ATPase from human erythrocyte  
Cipermetrina, deltametrina y glifosato afectan la actividad  
2
+
enzimática de la Ca -ATPasa de eritrocito humano  
1
2
3
JAVIER VARGAS-MEDRANO , JORGE A. SIERRA-FONSECA , MANUEL ARELLANO-CARRILLO  
3,4  
AND FERNANDO PLENGE-TELLECHEA  
Recibido: Mayo 3, 2011  
Aceptado: Julio 7, 2011  
Abstract  
Resumen  
The extensive use of pesticides can cause many human  
health problems. However, the effects of pesticides on a  
biochemical level are still poorly understood. In this study we  
analyzed the effect of different pesticides on the plasma  
Se ha observado que la exposición de personas a plaguicidas  
puede causar problemas a la salud. Sin embargo, el estudio del  
efecto de plaguicidas a un nivel bioquímico ha sido pobremente  
estudiado. En este estudio, analizamos el efecto de cipermetrina,  
2
+
2+  
membrane Ca -ATPase (PMCA) and on the sarco/  
deltametrina y glifosato sobre la actividad enzimática de las Ca -  
2
+
ATPasa de membrana plasmática (PMCA) y de retículo  
sarcoplásmico (SERCA). Diferentes concentraciones de estos  
pesticidas fueron añadidas a los experimentos de actividad  
enzimática como estrategia para determinar si estos compuestos  
eran capaces de afectar la actividad enzimática de PMCA. Nuestros  
resultados demuestran que la actividad enzimática de PMCA fue  
parcialmente inhibida por deltametrina en un 51.85% ± 3.7 cuando  
su concentración fue de 0.5 mM, mientras que cipermetrina y  
glifosato estimularon la actividad enzimática de PMCA a menores  
concentraciones. El máximo efecto estimulatorio de cipermetrina  
fue de 155% ± 9.0 cuando el compuesto alcanzó una concentración  
de 0.2 mM. Además, el herbicida glifosato fue capaz de estimular la  
actividad enzimática de PMCA en un 111% ± 2.0 a concentraciones  
de 0.1-0.2 mM. En conclusión, nuestros resultados demostraron  
que la actividad enzimática de PMCA fue también parcialmente  
inhibida con deltametrina, pero al contrario de cipermetrina y glifosato  
la estimularon. Nuestros resultados sugieren que las diferencias  
en las estructuras químicas de cipermetrina y deltametrina se ven  
reflejadas en el efecto provocado sobre PMCA. Sin embargo, una  
enzima similar, SERCA, no fue afectada ni por deltametrina ni  
glifosato. Estas diferencias se pudieran ver reflejadas en disturbios  
sobre la regulación celular del calcio.  
endoplasmic reticulum Ca -ATPase (SERCA) activities.  
2
+
Different amounts of pesticides were added to the Ca -  
dependent ATPase assays in order to determine if they were  
affecting the ATPase activity. The results showed that PMCA  
activity was partially inhibited by deltamethrin to 51.85% ±  
3.7 when its concentration in the reaction medium was 0.5  
mM, while cypermethrin and glyphosate stimulated the PMCA  
activity at the lowest concentrations tested. The maximum  
stimulatory effect of cypermethrin was of 155% ± 9.0 at a  
concentration of 0.2 mM. In addition, the herbicide glyphosate  
stimulated the activity 111% ± 2.0 at a concentration of 0.2  
mM. In conclusion, our results showed that PMCA activity  
was partially inhibited by deltamethrin, but cypermethrin and  
glyphosate stimulated their activity. Our findings suggest that  
cypermethrin and deltamethrin have different structure-  
activity relationships. However, SERCA was not sensitive to  
deltamethrin or glyphosate. These differences may be  
reflected in disturbs over cellular calcium regulation.  
2+  
Keywords: PMCA (plasma membrane Ca -ATPase), SERCA  
2
+
(
sarco/endoplasmic Ca -ATPase) enzymatic activity,  
cypermethrin, deltamethrin, glyphosate.  
2+  
Palabras clave: PMCA (ATPasa de Ca de membrana plasmática),  
2+  
SERCA (ATPasa de Ca de retículo endo/sarcoplásmico), actividad  
enzimática, cipermetrina, deltametrina, glifosato.  
_
________________________________  
1
Center of Excellence for Infectious Diseases, Biomedical Sciences Department, Texas Tech University Health Science Center and  
Paul L. Foster School of Medicine. El Paso, TX, U.S.A. 79905  
Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, U.S.A. 79968  
Departamento de Ciencias Químico Biológicas. UniversidadAutónoma de Ciudad Juárez, Juárez, Chih. México. Anillo Envolvente del  
Pronaf y Estocolmo s/n. Ciudad Juárez, Chih., México. C. P. 32300. Tel/Fax: 656 688 1800 al 09  
Dirección electrónica del autor de correspondencia: fplenge@uacj.mx.  
2
3
4
1
21  
Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
Introduction  
esticides are chemicals used worldwide in agriculture and in household settings, resulting  
in continuous human exposure from different sources including food, water, and occupational  
exposure. The effect of pesticides is targeted to specific organisms, however, pesticides  
P
are toxic substances widely released into the environment, thus posing a threat to human health  
Alavanja et al., 2004; Weiss et al., 2004). The damage caused by pesticide exposure has been a  
matter of concern for many years, but the toxic effects induced by most of these chemical compounds  
(
remain enigmatic (Alavanja et al., 2004).  
Pyrethroids are among the most used  
pesticides, and unlike first generation  
pyrethroids, the second generation of  
pyrethroids are more resistant to the  
environmental conditions and therefore are more  
persistent and toxic to living organisms. Two  
members of the second generation group are  
cypermethrin and deltamethrin, and they were  
studied in the present work. The toxic action of  
pyrethroids mainly focuses on the nervous  
system by interfering with the ionic channels,  
which causes membrane depolarization,  
synaptic alterations and immunotoxicity (Madsen  
et al., 1996; Narahashik, 1996; Soderlund et al.,  
stimulated by calmodulin (CaM), a small  
2+  
cytosolic Ca -binding protein (Carafoli, 1992).  
Another enzyme responsible for the  
2+  
maintenance of low Ca concentration in the  
2+  
cytoplasm is the sarcoplasmic reticulum Ca -  
ATPase (SERCA). This enzyme translocates  
2
+
Ca from the cytosol to the lumen of the  
sarcoplasmic or endoplasmic reticulum in an  
ATP-dependent mechanism (Khan et al., 2000).  
The toxic mechanisms of pesticides should  
be different for each case. However, since these  
molecules are generally lipophilic, the  
phospholipid bilayer of biological membranes  
could be a suitable toxicity target (Chefurka et  
al., 1987). This could interfere with membrane  
function and fluidity, thus affecting membrane-  
associated enzymes such as PMCA and  
SERCA. For instance, parathion, an  
organophosphate pesticide, is known to alter  
membrane organization, and it also has been  
shown that hexachlorobenzene, a cyclic  
organochlorine and hydrophobic pesticide,  
affects the functionality of two membrane-bound  
2002; Diel et al., 2003). Glyphosate, a frequently  
used organophosphate herbicide, has been  
reported to cause toxic effects such as nausea,  
renal failure, hepatic alterations, and behavioral  
disturbances and also affect the animal cell  
cycle (Steinrucken et al,. 1980; Marc et al., 2002;  
2+  
De Roos et al., 2005). Calcium (Ca ) signaling  
is a key parameter for cell survival. Calcium acts  
as a carrier of signals for different cellular  
processes, including muscle contraction,  
synaptic transmission and apoptosis. This  
+
+
enzymes: 5’-nucleotidase and Na /K -ATPase  
Courtney, 1976; Antunes-Madeira et al., 1994;  
(
2+  
means that intracellular Ca concentration must  
be strictly regulated (Carafoli, 2002). The  
Randi et al., 1998). Damage to the erythrocyte  
and sarcoplasmic reticulum (SR) membranes  
by some pesticides has been previously  
reported (Duchnowicz and Koter, 2003; Bhalla  
and Agrawal, 1998; Sahib and Desaiah, 1987).  
In addition, the functionality of PMCA and SERCA  
can be affected by a variety of hydrophobic  
molecules, including some studied pesticides  
2+  
plasma membrane Ca -ATPase (PMCA) plays  
2
+
a key role in the maintenance of Ca  
homeostasis. PMCA is a membrane-bound  
2+  
enzyme responsible for Ca transport from the  
cytosol to the extracellular space using the  
energy provided by theATP hydrolysis. Typically  
the erythrocyte is the selected cell to obtain  
PMCA preparations, but the enzyme is present  
in all eukaryotic plasma membranes. The  
hydrolytic activity of PMCA can be directly  
(Price, 1976; Jones et al., 1985; Michelangeli et  
al., 1990; Janik and Wolf, 1992; Salas and  
Romero, 1996; Plenge-Tellechea et al., 1999).  
The aim of the present study was to test if  
1
22  
 Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
cypermethrin, glyphosate and deltamethrin were  
propane-sulfonic acid), pH 7.4 in the last four  
washes to remove EDTA (ethylenediamine-  
tetraacetic acid). The erythrocyte membrane  
preparations were stored in aliquots at -80°C  
until they were used.  
2+  
able to affect the Ca -ATPase hydrolytic activity  
of PMCA; specifically the human PMCA found  
in membranes from erythrocyte. Findings from  
this investigation will shed light on the possible  
toxicological damage induced by these widely  
Preparation of SR vesicles enriched with  
SERCA. Microsomal membranes were  
obtained by differential centrifugation after  
homogenization of low density SR of skeletal  
fast-twitch muscles. They were preserved in 10  
mM Mops pH 7.0 and 30% (w/v) sucrose as  
previously described (Eletr and Inesi, 1972), and  
stored at -80°C until they were used.  
2+  
used pesticides to this human Ca -ATPase.  
Material and methods  
Biological materials. Plasma membrane-  
containing PMCA (EC=3.6.3.8) were obtained  
from packed human erythrocytes of non-  
outdated human blood. Packed human blood  
was a donation from the General Hospital in the  
city of Juárez, México. For the isolation of SR  
vesicles enriched with SERCA (EC=3.6.3.8),  
female New Zealand rabbit weighing 2 kg were  
obtained from the biotherium and sacrificed in a  
Protein concentration. The total membrane  
protein concentration was determined by the  
colorimetric method described by Lowry et al.  
(
1951), using bovine serum albumin as the  
standard protein.  
CO chamber. All the biological materials used  
2
2+  
Free Ca concentration in the reaction  
were obtained in accordance with the moral and  
ethical principles of the University Autonomous  
of Juárez City (UACJ).  
2+  
medium. The free Ca concentration used in  
the experiments was determined using a  
computer program (Fabiato and Fabiato, 1979).  
The computer program Calcium takes into  
account the absolute stability of the constant  
Chemicals.Adenosine 5’triphosphate (ATP)  
and bovine serum albumin were purchased from  
Sigma Inc. (Mexico). CaCl was obtained from  
2+  
2
value for the Ca -EGTA complex, the EGTA  
J. T. Baker (Mexico). Cypermethrin (alpha-  
methrine) (CAS: 52315-07-8), deltamethrin  
protonation equilibria (Blinks et al., 1982), the  
2+  
presence of Ca ligands, and the pH in the  
(CAS: 52918-63-5) and glyphosate (glyphosate-  
medium.  
ammonium) (CAS: 1071-83-6) were acquired  
PMCA activity. The PMCA activity was  
performed at 37°C in a typical reaction medium  
containing 30 mM Mops buffer pH 7.0, 130 mM  
KCl, 3 mM MgCl , 0.5 mM EGTA, 0.5 mM CaCl  
2
+
from Supelco (USA). The Ca ionophore  
A23187 (calcimycin), EGTA(ethylene glycol-bis  
(
-aminoethyl ether)-N,N,N’,N’-tetra acetic acid),  
Mops were purchased from Sigma-Aldrich Co.  
Mexico). Other chemicals used in this  
2
+
2
2
(
10 μM free Ca ) and 0.12 mg protein/ml. The  
(
reaction was started with the addition of 1 mM  
ofATP. The PMCAactivity was determined using  
the colorimetric method described by Lanzetta  
et al. (1979), following the appearance of Pi  
investigation were reagent grade. Cypermethrin  
and deltamethrin were dissolved in methanol.  
The concentration of methanol added in the  
experiments never was higher than 1% (v/v).  
Glyphosate was dissolved in warm water.  
(inorganic phosphate) during theATP hydrolysis  
reaction. The stabilizing agent Sterox was  
substituted by 0.18% (v/v) of Tween-20 as  
described by Baykov et al. (1988). Different  
concentrations of the pesticides cypermethrin,  
deltamethrin, and glyphosate were also present  
in the mixture as indicated in the corresponding  
figure. The enzymatic activity was measured in  
the absence of CaM.  
Isolation of erythrocyte membranes  
containing PMCA. Hemoglobin-free erythrocyte  
membranes depleted of endogenous CaM were  
obtained from non-outdated packed human  
erythrocytes according to a previously described  
method (Niggli et al., 1979), except for the use  
+
of 10 mM Mops-K (Mops: 4-morpholine-  
1
23  
Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
SERCAactivity. The hydrolytic reaction was  
measured at 25°C by determining the  
spectrophotometric procedure (Lanzetta et al.,  
1979; Baykov et al., 1988). The pesticides tested  
on PMCA activity were cypermethrin, glyphosate  
and deltamethrin using the appropriate  
appearance of P using a previously described  
i
colorimetric method by Lin and Morales (1977).  
The reaction mixture contained 20 mM Mops  
+
2+  
2+  
concentrations of K , Mg , ATP, and Ca . This  
study was conducted in the absence of CaM.  
The second generation pyrethroids cypermethrin  
and deltamethrin altered the PMCA activity as  
shown in Fig. 1. Cypermethrin significantly  
stimulated theATP hydrolysis at concentrations  
buffer pH 7.0, 80 mM KCl, 5 mM MgCl , 1 mM  
2
2
+
EGTA, 0.967 mM CaCl , (10 μM free Ca ), and  
2
0
.75 μMA23187. The enzymatic reaction started  
by the addition of 1 mM ATP. Different  
concentrations of the pesticides deltamethrin  
and glyphosate were also present in the mixture  
as indicated in the corresponding figure.  
2+  
from 0.005-0.5 mM without inhibiting the Ca -  
ATPase activity (Fig. 1A).  
Statistical analysis and other specifications.  
Statistical analysis such as Pearson product  
moment correlation, linear regression and  
standard error were calculated with the  
computer software Sigma Plot Graph System.  
Pesticides were always included in the  
incubation/reaction medium after erythrocyte  
membranes or SR vesicles had been added.  
The mixtures were always pre-incubated for at  
least 2 minutes before the reactions were  
started. The experimental data corresponds at  
least to three independent measurements  
performed in duplicates and using more than  
one membrane preparation.  
The maximal stimulation was 55% ± 9.0 over  
the activity control, at a concentration of 0.2 mM.  
However, deltamethrin did not stimulate PMCA  
activity. Interestingly, deltamethrin significantly  
inhibited the hydrolytic activity of the enzyme to  
51.85% ± 3.7 at 0.5 mM (Fig. 1B). In addition, we  
studied the effect of glyphosate and unexpectedly  
this pesticide affected PMCA activity in a biphasic  
manner. As well as cypermethrin, glyphosate  
significantly stimulated the hydrolytic activity of  
the enzyme over 11% ± 2.0 with respect the  
control when its concentration was between  
0.05-0.10 mM (Fig. 1C). However, higher  
concentrations of glyphosate (0.5-1.0 mM)  
significantly inhibited PMCA activity to 73% ± 3.5  
when compared to the control. Our findings prove  
that cypermethrin and deltamethrin, two second  
generation pyrethroids, affected PMCAactivity, as  
well as glyphosate.  
Results  
Cypermethrin, deltamethrin and glyphosate  
affect PMCA activity in different manners. The  
present study shows the effect of cypermethrin,  
deltamethrin and glyphosate on the specificATP  
2+  
The Ca -ATPase SERCA was unaffected  
2
+
hydrolysis mediated by PMCA. This Ca -  
dependent pump utilizes ATP as a source of  
by deltamethrin and glyphosate. In order to  
investigate if our previous findings were general  
2
+
energy to pump Ca across the plasmatic  
membrane. Our study consisted of different  
independent treatments in which distinct  
concentrations of pesticides where added to the  
PMCA reaction medium. Randomly, different  
concentrations of cypermethrin, deltamethrin  
and glyphosate were tested in order to determine  
2+  
effects for other Ca -ATPases, we studied the  
SERCA activity as a function of the pesticide  
concentration (deltamethrin and glyphosate). We  
choose only one compound from the second  
generation of pyrethroids, and the organophos-  
phorate glyphosate to test our hypothesis. The  
concentrations of deltamethrin and glyphosate  
used in this study were in the same ranges as  
2+  
which ones affected the Ca -ATPase activity  
PMCA). Therefore, only the concentrations that  
2+  
(
previously used for PMCA. The Ca -ATPase  
activity was measured at 25°C, in a buffered  
produced an effect are shown in this study. This  
biological system is measured by following the  
appearance of phosphate during the ATP  
hydrolysis and it was followed using a  
2+  
medium containing 10 M free Ca and 1 mM  
ATP. This is a reliable and well established  
procedure of measuring SERCA activity.  
1
24  
 Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
2+  
Fig 1. The effect of cypermethrin, deltamethrin and glyphosate on the hydrolysis ofATPmediated by the Ca -ATPase from human plasma  
membrane. The reactions were performed as described in Methods and they were started after the addition of 1 mMATP. The ATPase activity  
was measured in the steady state of the enzyme. Different concentrations of pesticides were added into reaction media as indicated at the  
x axes. Closed circles show the average of 3 ± SE independent experiments. For figure A) *, p=<0.001, **, p=0.002; for figure B) *, p=0.020,  
*
*, p=0.003, ***, p=0.010, ****, p=<0.001, *****, p=0.002; for figure C) *, p<0.001, **, p=0.006, ***, p=0.012, ****, p=0.005 compared to the  
2+  
control that correspond to the 100% of the Ca -ATPase activity. The average (n=3) of ATPase activity control was 18nmol P/min/mg of  
i
protein and it was normalized to 100%. The chemical structures of cypermethrin and deltamethrin are shown and they differ in substitution  
of two bromines in deltamethrin for two chlorines in cypermethrin (PubChem Substance ID: 24868901 and 40585 respectively).  
Figure 1A  
Figure 1B  
Figure 1C  
This data was obtained in the presence of a  
membrane protein concentration of 0.01 mg SR  
protein/ml. Deltamethrin (Fig. 2A) was not found  
to significantly affect SERCA activity, as  
demonstrated by a Pearson product-moment  
correlation coefficient -0.135 whit a p=0.7283  
a correlation coefficient of -0.502 with a p=0.168  
(n=9), once again indicating that there was not  
a statistically significant relationship between  
SERCA activity and glyphosate concentration.  
This conclusion was determined based on the  
high p-values (p  0.05) obtained for each  
corresponding analysis. Therefore, the  
pesticides tested on the SERCA activity  
(glyphosate and deltamethrin) had no significant  
effect on theATP hydrolytic activity mediated by  
this SERCA at the tested concentrations. In  
conclusion, our results show that SERCA is not  
sensitive to glyphosate and deltamethrin.  
(
n=9), indicating the lack of a statistically  
significant relationship between enzyme activity  
and deltamethrin concentration. Similar results  
were obtained when we assayed glyphosate  
(Fig. 2B); since the compound was not found to  
significantly affect SERCA activity. This was  
confirmed with a correlation test, which provided  
1
25  
Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
2+  
Fig 2. The effect of deltamethrin and glyphosate on the hydrolysis of ATP mediated by the Ca -ATPase of sarcoplasmic  
2+  
reticulum. Ca -ATPase activity was measured as described in Methods and 1 mM ATP was used to start the reaction in the  
steady state of the enzyme. The pesticides were titrated as indicated at the x axes. Each data point is the average of 3 ± SE  
independent experiments. Lines correspond to a computed linear regressing showing no significant effect (p0.05) of cypermethrin  
and deltamethrin on the SERCAactivity. TheATPase activity was 2.713 ± 0.008 μmol P/min/mg of SR and it was normalized to 100%.  
i
Figure 2A  
Figure 2B  
Discussion  
2
+
Our research was conducted to study the  
effect of cypermethrin, deltamethrin and  
glyphosate on the hydrolytic activity of the  
human PMCA, which is found in membranes  
from erythrocytes.  
as methanol are known to stimulate Ca -  
ATPase activity and this was carefully evaluated  
in our lab before titrating pyrethroids into our  
assays (Benaim et al., 1994). The studies in the  
effect of cypermethrin, deltamethrin and  
2
+
glyphosate on Ca -ATPases have been  
described few times in the literature, in different  
animal and plant models, but not in particular  
on the human PMCA isoform from membranes  
of erythrocyte, therefore, the importance of our  
study (Clark et al., 1987; Sahib et al., 1987;  
Kodavanti et al., 1993; Souza da Silva et al.,  
Pyrethroids, like cypermethrin and  
deltamethrin, are widely used in combination  
with organophosphates instead of chlorinated-  
hydrocarbons such as DDT. In addition, it was  
established that pyrethroids were designed to  
target sodium channels (Cremer, 1983;  
Narahashi, 1996). Later on, pyrethroids were  
improved into more environmental resistant  
compounds and they were called pyrethroids  
of second generation and good examples of  
these are cypermethrin and deltamethrin. The  
second generation of pyrethroids, cypermethrin  
and deltamethrin were both dissolved in  
methanol; however, the amount of methanol  
added together with the pyrethroids into the  
reaction media never exceeded 1% as a final  
concentration. The main reason for maintaining  
a low concentration (lower than 1%) of methanol  
in our assays was to avoid significant effects  
on PMCA or SERCA activities. Alcohols such  
2003). To the best of our knowledge, the effect  
of these compounds have never been reported  
before for human PMCA from membranes of  
erythrocyte. Similar studies were done, such as  
2+  
the study of esbiol and cyfluothrin effect on Ca -  
ATPase using rat’s leukocyte and synaptosome  
membranes (Grosmal and Diel, 2005).  
According to our data, the pyrethroid  
cypermethrin produced a marked increase on  
the PMCAenzymatic activity, followed by a partial  
inhibition on the PMCA activity (Fig. 1A). While  
the hydrolytic activity was inhibited when  
deltamethrin was titrated into the PMCA reaction  
1
26  
 Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
(
Fig. 1B), on the other hand, glyphosate exhibited  
ATPase from rat brain, while permethrin, esbiol,  
2+  
the same biphasic effect that we observed with  
cypermethrin, but the stimulation and inhibition  
was lower (Fig. 3C). The adverse effect  
produced by these pesticides is related to the  
chemical structure of each compound  
and cyfluthrin affect the activity of the Ca -  
ATPase from leukocyte membranes (Kakko et  
al., 2003; Grosman and Diel, 2005). This is an  
important issue, because even thoughATPases  
can be similar or the same in different cell types,  
the lipidic composition of a membrane may  
change the effect of a compound in a given  
ATPase. Membrane lipid composition has been  
shown to be determinant in the effect of  
compounds like pyrethroids. Comparative  
(
Soderlund et al., 2002). Even though the  
pyrethroid molecules under study have similar  
structures, they do not affect different enzymes  
in the same way, hence the importance of  
studying each individual compound on specific  
enzymatic systems. Many structure-activity  
relationship studies have been reported and it  
has been shown that minor changes in the  
chemical structure of a compound can  
dramatically modify the effect of the molecule  
on different protein systems (Plenge-Tellechea  
et al., 1999). Structurally, both pyrethroids share  
a similar structure with a minor difference.  
Cypermethrin is a chlorinated compound, with  
two chlorides in their structure, in contrast to  
deltamethrin that contains two bromines instead  
of chlorides (Inserts in Fig. 1A and 1B  
respectively). These small modifications in the  
chemical structure of both cypermethrin and  
deltamethrin produced a different structure-  
activity relationship. While the chlorines in  
cypermethrin are making it a stimulator of PMCA  
activity at the lower concentrations tested and  
then an inhibitor at higher concentrations, the  
bromide-bearing deltamethrin acts as a PMCA  
inhibitor only.  
2
+
studies using Ca -ATPase in different rat  
membrane had been shown to differ in sensibility  
to pyrethroids (Grosman and Diel, 2005).  
Therefore, it is very interesting to see how the  
effect of the same compound varies inATPases  
from different derived preparations or cell  
source.  
Glyphosate is a pesticide that belongs to the  
group of widely used organophosphates. They  
produce alterations on ATPases and good  
examples of them are anilofos and paraoxon  
(Blasiak, 1995; Hazarika et al., 2001). In addition,  
there is evidence suggesting that malathion  
inhibits ATP hydrolysis in brain membranes  
preparations from zebrafish (Senger et al.,  
2
005). In agreement with our results, where  
glyphosate inhibited PMCA hydrolytic activity  
Fig. 1C), it has been shown that glyphosate  
inhibits the ATPase of slug nervous system  
Souza da Silva et al., 2003). It was interesting  
(
(
to find out, that glyphosate affected PMCA  
activity as well as the herbicide paraquat, which  
is known to inhibit PMCA activity in membranes  
from erythrocyte (Janik and Wolf, 1992).  
However in neurons, paraquat induced the  
production of ROS and this seems to inactivate  
neuronal PMCA (Zaidi et al., 2009).  
Different authors mentioned that  
pyrethroids are highly hydrophobic pesticides  
with a high-tendency to target biological  
membranes from which they can disrupt  
membrane organization, thus affecting the  
activity of membrane proteins. In addition to our  
findings, pyrethroids are known to inhibit the  
ATPase activity derived from rat, squid, toad, and  
cockroach brain membrane preparations  
Unlike PMCA, SERCA was more resistant  
to the adverse effects of the selected pesticides  
in our experiments. None of the pesticides  
tested (glyphosate and deltamethrin) had a  
significant effect on the hydrolytic activity of the  
SERCA, based on the high p-values obtained  
(Michelangeli et al., 1990; Berlin et al., 1984;  
Clark and Matsumura, 1987; Sahib et al., 1987;  
Moya-Quiles et al., 1996). Additionally, the  
pyrethroids cypermethrin and permethrin are  
known to inhibit the activity of the synaptosomal  
(
p 0.05) (Fig. 2A and 2B). We performed these  
experiments in SERCA in order to validate our  
findings in PMCA, and surprisingly they were  
1
27  
Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
very different. This difference may be due to the  
closed-membranes (spherical shape) of SR  
vesicles and to the great quantity of Ca pumps  
ones found in a living model) that is required for  
ROS production. In addition, there is no way for  
these compounds under study to enter into a  
redox cycle or be biotransformated in a redox  
cycler that may lead to ROS production without  
the cellular components required for ROS  
production in our test tube. Moreover, several  
investigations had shown that herbicides like  
paraquat targets neurons, where it mediated the  
generation of ROS (Corasaniti et al., 1992).  
Generation of ROS mediated by these  
compounds demonstrated how toxic these  
compounds really are when they enter a living  
cell. However, our findings contributed to show  
additional toxic effects produced by these  
compounds. In addition to ROS production cited  
in the literature, these compounds also affect  
2+  
per total protein, which represents 0.2 μM of  
2+  
Ca -ATPase per 0.05 mg/ml of total membrane  
protein (Deamer and Baskin, 1969; Lax et al.,  
2
002). In contracts with SERCA, PMCA is an  
open-membranes system. Plasmatic  
membrane from erythrocytes also contained  
2+  
less Ca -ATPase in compared to SR vesicles,  
as the quantity of functional membrane protein  
represents only 0.01-0.1% of PMCA from the total  
erythrocyte membrane protein, the use of this  
system is highly relevant, given the fact that it is  
directly derived human tissue (Knauf et al.,  
1974).  
A second reason could be the lipid  
2
+
2+  
Ca homeostasis, by affecting Ca -carriers  
composition of membranes from erythrocytes  
versus RS membranes from rabbit’s muscle.  
The phospholipids/cholesterol ratio was  
determined to be 0.96 for membrane of  
erythrocyte, which means that the amount of  
both lipids is equilibrated in this membrane type  
2+  
such as Ca -ATPases.  
Finally, SERCA and PMCA are different  
proteins in terms of their pharmacological  
sensitivity, as it has been demonstrated by the  
use of several inhibitors. The effects caused by  
pesticides on the biochemical level are still poorly  
understood. However, it is clear that some  
pesticides could exert their toxic effects by  
interfering with membrane-bound enzymes such  
(
Gottfriedg, 1967). However, in SR this ratio is  
totally different and it was determined to be 0.05  
Waku and Nakazawa, 1964). ATPases in  
(
general, are lipid-dependent proteins and  
function of the ATPase is highly dependent of  
the chemical composition and physical phase  
of the lipids surrounding the protein (Lee, 1998).  
This may be the case of the compounds studied  
here, were they may modify in some degree the  
lipid environment that surround theATPase, thus  
affecting ATPase function.  
2
+
as PMCA and SERCA, thus disrupting Ca  
homeostasis. Calcium is critical for cell function,  
since cells are not able to survive in the absence  
2+  
of Ca , but an excess of the ion can also be  
lethal, since it can lead to apoptosis (Lam et al.,  
1994).  
Conclusion  
It has been shown that cypermethrin,  
deltamethrin and glyphosate induce the  
production of reactive oxygen species (ROS) in  
different model organisms; however we did not  
evaluate the production of ROS in our in vitro  
model and in presence of cypermethrin,  
deltamethrin or glyphosate (Giray et al., 2001;  
Li et al., 2007;Ahsan et al., 2008). Even though  
there is a remote possibility of having ROS  
production in pure and washed membranes,  
which will lead to lipid peroxidation of the lipids  
in our membrane model, we concluded that we  
did not have an electron source (such as the  
Our results do not necessarily reflect the  
concentrations that may produce poisoning, but  
they are helpful in understanding the effects of  
cypermethrin, deltamethrin and glyphosate on the  
biological systems studied in this investigation.  
The present study concludes that PMCA activity  
was significantly affected by the pesticides studied  
and future investigations should focus on the  
molecular mechanism behind this effect. SERCA  
was unaffected by deltamethrin and glyphosate.  
This may be due the lipidic nature of this  
membrane and the closed-membrane (SR  
1
28  
 Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
COURTNEY, K.D. 1979. Hexachlorobenzene (HCB): a review. Environ.  
Res. 20(2):225-266.  
CREMER, J.E. 1983. The influence in mammals of the pyrethroid  
insecticides. Dev. Toxicol. Environ. Sci. 11:61-72.  
DEAMER, D.W., and R.J. Baskin. 1969. Ultrastructure of sarcoplasmic  
reticulum preparations. J. Cell Biol. 42(1):296-307.  
DEROOS,A.J.,A. Blair, J.A. Rusiecki, J.A. Hoppin, M. Svec, M. Dosemeci,  
D.P. Sandler, and M.C. Alavanja. 2005. Cancer incidence among  
Glyphosate-exposed pesticide applicators in the agricultural  
health study. Environ. Health Perspect. 113(1):49-54.  
vesicle) system employed in this study. The effect  
of pyrethroids and organophosphorates in PMCA  
2
+
should affect Ca homeostasis and their  
consequences still need to be elucidated. An  
inhibition on SERCA and PMCA activities should  
2
+
produce an increase in intracellular Ca  
concentration with may kill a cell.  
DIEL, F., B. Horr, H. Borck, and T. Irman-Florjanc. 2003. Pyrethroid  
insecticides influence the signal transduction in T helper  
lymphocytes from atopic and nonatopic subjects. Inflamm. Res.  
Acknowledgements  
This project was supported by the grant  
CONACYT CHIH-2006 C01-57268 (Mexico).  
52(4):154-163.  
DUCHNOWICZ, P., and M. Koter. 2003. Damage to erythrocyte membrane  
caused by chlorophenoxyacetic herbicides. Cell Mol. Biol. Lett.  
8
(1):25-30.  
References  
ELETR, S., and G. Inesi. 1972. Phospholipid orientation in sarcoplasmic  
membranes: spin-label ESR and proton MNR studies. Biochim.  
Biophys. Acta 282(1):174-179.  
FABIATO,A., and F. Fabiato. 1979. Calculator programs for computing  
the composition of the solutions containing multiple metals and  
ligands used for experiments in skinned muscle cells. J. Physiol.  
AHSAN, N., D.G. Lee, K.W. Lee, I.Alam, S.H. Lee, J.D. Bahk, and B.H.  
Lee. (2008). Glyphosate-induced oxidative stress in rice leaves  
revealed by proteomic approach. Plant Physiol Biochem.  
46(12):1062-70.  
ALAVANJA, M.C., J.A. Hoppin, and F. Kamel. 2004. Health effect of  
chronic pesticide exposure: cancer and neurotoxicity. Annu.  
Rev. Public Health 25:155-197.  
ANTUNES-MADEIRA, M.C., R.A. Videira, and V.M. Madeira. 1994. Effects  
of parathion on membrane organization and its implications for  
the mechanisms of toxicity. Biochim. Biophys. Acta 1190(1):149-  
75(5):463-505.  
GIRAY B, A. Gürbay, and F. Hincal. (2001). Cypermethrin-induced  
oxidative stress in rat brain and liver is prevented by vitamin E or  
allopurinol. Toxicol. Lett. 118(3):139-46.  
GOTTFRIEDG, E.L. 1967. Lipids of human leukocytes: relation to cell  
type. J. Lipid Research. 8: 321-327.  
GROSMAN, N., and F. Diel. 2005. Influence of pyrethroids and  
piperonylbutoxide on the Ca2+-ATPase activity of rat brain  
synaptosomes  
154.  
BAYKOV, A.A., O.A. Evdushenko, S.M. Avaeva. 1988. A malachite  
green procedure for orthophosphate determination and its use  
in alkaline phosphatase-based enzyme immunoassay. Anal.  
Biochem.171(2):266-270.  
BENAIM, G., V. Cervino, C. Lopez-Estraño, and C. Weitzman. 1994.  
Ethanol stimulates the plasma membrane calcium pump from  
human erythrocytes. Biochim. Biophys. Acta 1195(1): 141-8.  
BERLIN, J.R., T. Akera, T.M. Brody, and F. Matsumura.1984. The  
inotropic effects of a synthetic pyrethroid on isolated guinea pig  
atrial muscle. Eur. J. Pharmacol. 98(3-4):313-322.  
BHALLA, P., and D. Agrawal. 1998. Alterations in rat erythrocyte  
membrane due to hexachlorocyclohexane (technical) exposure.  
Hum. Exp. Toxicol. 17(11):638-642.  
BLASIAK, J. 1995. Cooperative binding of the organophosphate  
paraoxon to the (Na++K+)-ATPase, Z. Naturforsch C. 50(9-  
and  
leukocyte  
membranes.  
Int.  
Immunopharmacol. 5(2):263-270.  
HAZARIKA, A., S.N. Sarkar, and M.Kataria. 2001. Subacute toxicity of  
anilofos, a new organophosphate herbicide in male rats: effect  
on lipid peroxidation and ATPase activity. Indian J. Exp. Biol.  
39(11):1113-1117.  
JANIK, F., and H.U. Wolf. 1992.The Ca(2+)-transport-ATPase of  
human erythrocytes as an in vitro toxicity test system—acute  
effects of some chlorinated compounds. J. Appl. Toxicol.  
12(5):351-358.  
JONES, O.T., R.J. Froud, and A.G. Lee. 1985. Interactions of  
hexachlorocyclohexanes with the (Ca2+ + Mg2+)-ATPase from  
sarcoplasmic reticulum.Biochim. Biophys. Acta. 812(3):740-751.  
KAKKO, I.,T.Toimela, and H. Tahti. 2003.The synaptosomal membrane  
bound ATPase as a target for the neurotoxic effects of  
pyrethroids, permethrin and cypermethrin. Chemosphere  
10):660-663.  
BLINKS, J., W. Wier, P. Hess, and F. Prendergast. 1982. Measurement  
of Ca2+ concentrations in living cells.Prog. Biophys. Mol. Biol.  
51(6):475-480.  
KHAN, S.Z., C.L. Longland, and F. Michelangeli. 2000. The effects of  
phenothiazines and other calmodulin antagonists on the  
sarcoplasmic and endoplasmic reticulum Ca(2+) pumps.  
Biochem. Pharmacol. 60(12):1797-1806.  
KNAUF, P.A., F. Provervio, and J.F. Hoffmann. 1974. Electrophoretic  
separation of different phosphoproteins associated with Ca2+-  
ATPase and Na+, K+-ATPase in human red cell ghosts. J. Gen.  
Physiol. 63(3):324-336.  
KODAVANTI, P.R., W.R. Mundy, H.A. Tilson, and G.J.Harry. 1993. Effects  
of selected neuroactive chemicals on calcium transporting systems  
in rat cerebellum and on survival of cerebellar granule cells.  
Fundam. Appl. Toxicol. 21(3):308-16.  
LAM, M., G. Dubyak, L. Chen, G. Nuñez, R.L. Miesfeld, C.W. Distelhorst.  
1994. Evidence that BCL-2 represses apoptosis by regulating  
endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl. Acad.  
Sci. 91(14):6569-6573.  
40(1-2):1-114.  
2+  
CARAFOLI, E. (1992).The Ca pump of the plasma membrane. J. Biol.  
Chem. 267(4):2115-2118.  
CARAFOLI, E. (2002). Calcium signaling: a tale for all seasons. Proc.  
Natl. Acad. Sci. 99(3):1115-1122.  
CHEFURKA, W., R.C. Chatelier, and W.H Sawyer. 1987. Perturbation of  
phospholipid bilayers by DDT.Biochim. Biophys. Acta 896(2):181-  
186.  
CLARK, J.M., and F. Matsumura. 1987. The action of two classes of  
pyrethroids on the inhibition of brain Na-Ca and Ca+Mg ATP  
hydrolyzing activities of the American cockroach. Comp.  
Biochem. Physiol. C. 86(1):135-145.  
CORASANITI, M.T., G. Bagetta, P. Rodinò,S. Gratteri, and G. Nisticò.  
1992. Neurotoxic effects induced by intracerebral and systemic  
injection of paraquat in rats. Hum. Exp. Toxicol. 11(6): 535-9.  
1
29  
Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
LANZETTA, P.A., L.J. Alvarez, P.S. Reinach, and O.A. Candia. 1979.  
An improved assay for nanomole amounts of inorganic  
phosphate. Anal. Biochem. 100(1):95-97.  
PRICE, N.R. 1976. The effect of two insecticides on the Ca2+  
Mg2+ -activated ATPase of the sarcoplasmic reticulum of the  
flounder, Platichthysflesus. Comp. Biochem. Physiol. C.  
55(2):91-94.  
RANDI, A. S., H.A. Sancovich, A.M. Ferramola de Sancovich, A.  
Loaiza, L. Krawiec, and D.L. Kleiman de Pisarev.1998.  
Hexachlorobenzene-induced alterations of rat hepatic  
microsomal membrane function. Toxicology. 125(2-3):83-94.  
SAHIB, I.K., and D. Desaiah. 1987. Inhibition of beta-adrenergic  
stimulated calcium pump of rat cardiac sarcoplasmic reticulum  
by tricyclohexyltin hydroxide. Cell Biochem. Funct. 5(2):149-  
54.  
LAX, A., F.Soler, and F. Fernandez-Belda. 2002. Inhibition of  
2+  
sarcoplasmic reticulum Ca -ATPase by miconazole. Am. J.  
Physiol. Cell Physiol. 283(1):C85-92.  
LEE, A.G. 1998. How lipids interact with an intrinsic membrane  
protein: the case of the calcium pump. Biochim. Biophys.  
Acta. 1376(3):381-90.  
LI, H.Y., Y.F. Zhong, S.Y. Wu, and N. Shi. (2007). NF-E2 related  
factor 2 activation and heme oxygenase-1 induction by tert-  
butylhydroquinone protect against deltamethrin-mediated  
oxidative stress in PC12 cells. Chem. Res. Toxicol.  
SAHIB, I.K., K.S. Prasada Rao, and D. Desaiah. 1987.Pyrethroid  
2+  
2
0(9):1242-51.  
inhibition of basal and calmodulin stimulated Ca ATPase and  
adenylatecyclase in rat brain. J. Appl. Toxicol. 7(2):75-80.  
SALAS, V., and P.J. Romero. 1996. Effects of trifluralin and oryzalin  
on the human erythrocyte Ca-ATPase. Pharmacol. Toxicol.  
78(6):439-440.  
LIN, T., and M. Morales. 1977.Application of a one-step procedure  
for measuring inorganic phosphate in the presence of  
proteins: the actomyosin ATPase system. Anal. Biochem.  
7
7(1):10-17.  
LOWRY, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall.1951.  
Protein measurement with the folin phenol reagent. J. Biol.  
Chem. 193(1):265-275.  
MADSEN, C., M.H. Claesson, and C. Ropke. 1996. Immunotoxicity  
of the pyrethroid insecticides deltametrin and alpha-  
cypermetrin. Toxicology 107(3):219-227.  
MARC, J., O. Mulner-Lorillon, S. Boulben, D, Hureau, G. Durand,and  
R. Belle. 2002. Pesticide Roundup provokes cell division  
dysfunction at the level of CDK1/cyclin B activation. Chem.  
Res. Toxicol. 15(3):326-331.  
MICHELANGELI, F., M.J. Robson, M.J. East, and A.G. Lee. 1990.  
Fluorescence and kinetic studies of the interactions of  
pyrethroids with (Ca2+ + Mg2+)-ATPase. Biochim. Biophys.  
Acta 1028(1):58-66.  
MICHELANGELI, F., M.J. Robson, M.J. East, and A.G. Lee. 1990.  
Fluorescence and kinetic studies of the interactions of  
pyrethroids with (Ca2+ + Mg2+)-ATPase. Biochim. Biophys.  
Acta 1028(1):58-66.  
MOYA-QUILES, M.R., E. Munoz-Delgado, and C.J. Vidal. 1996. Effects  
of the pyrethroid insecticide permethrin on membrane fluidity.  
Chem. Phys. Lipids. 79(1):21-28.  
NARAHASHI, T. 1996. Neuronal ion channels as the target sites of  
insecticides. Pharmacol. Toxicol. 79(1):1-14.  
NIGGLI, V., J.T. Penniston, and E. Carafoli.1979. Purification of the  
SENGER, M.R., E.P.Rico, M. de BemArizi, D.B. Rosemberg, R.D.  
Dias, M.R. Bogo, and C.D. Bonan. 2005. Carbofuran and  
malathion inhibit nucleotide hydrolysis in zebrafish (Daniorerio)  
brain membranes. Toxicology. 212(2-5):107-15.  
SODERLUND, D. M., J.M. Clark, L. P. Sheets, L.S. Mullin, V.J. Picirillo,  
D. Sargent, J.T. Stevens, and M.L. Weiner. 2002. Mechanisms  
of pyrethroids neurotoxicity: implications for cumulative risk  
assessment. Toxicology. 171(1):3-59.  
SOUZA DA SILVA, R., P. CognatoGde, F.C. Vuaden, M.F. Rezende,  
F.V. Thiesen, G. FauthMda, M.R. Bogo, C.D. Bonan and R.D.  
Dias. 2003. Different sensitivity of Ca(2+)-ATPase and  
cholinesterase to pure and commercial pesticides in nervous  
ganglia of Phyllocaulissoleiformis (Mollusca). Comp. Biochem.  
Physiol. C. Toxicol. Pharmacol. 135(2):215-20.  
STEINRUCKEN, H.C., and N. Amrhein. 1980. The herbicide  
glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-  
3
9
-phosphate synthase. Biochem. Biophys. Res. Commun.  
4(4):1207-1212.  
WAKU AND NAKAZAWA, 1964. On the lipids of rabbit sarcoplasmic  
reticulum. J. Biochem. 56:95-6.  
WEISS, B., S.Amler, and R.W.Amler. 2004. Pesticides. Pediatrics.  
113(4):1030-1036.  
ZAIDI, A., D. Fernandes, J.L. Bean, and M.L. Michaelis. (2009).  
Effects of paraquat-induced oxidative stress on the neuronal  
plasma membrane Ca(2+)-ATPase. Free Radic. Biol. Med.  
(
Ca2+-Mg2+)-ATPase from human erythrocyte membranes  
using a calmodulin affinity column. J. Biol. Chem.  
54(20):9955-9958.  
4
7(10):1507-14.  
2
PLENGE-TELLECHEA, F., F. Soler, F. Fernandez-Belda. 1999. Tricyclic  
antidepressants inhibit the Ca(2+)-dependent ATPase activity  
from plasma membrane. Arch. Biochem. Biophys. 370(1):119-  
1
25.  
Este artículo es citado así:  
Vargas-Medrano, J., J.A. Sierra-Fonseca, M. Arellano-Carrillo and F. Plenge-Tellechea. 2011: Cypermethrin,  
deltamethrin and glyphosate affect the activity of the Ca2+-ATPase from human erythrocyte. TECNOCIENCIA  
Chihuahua 5(3): 121-131.  
1
30  
 Vol. V, No. 3  Septiembre-Diciembre 2011 •  
JAVIER VARGAS-MEDRANO, JORGE A. SIERRA-FONSECA, MANUEL ARELLANO-CARRILLO AND FERNANDO PLENGE-TELLECHEA: Cypermethrin,  
2
+
deltamethrin and glyphosate affect the activity of the Ca -ATPase from human erythrocyte  
Resúmenes curriculares de autor y coautores  
JAVIER VARGAS MEDRANO. Originario de Ciudad Juárez, ingre al programa de Biología de la Universidad Autónoma de Ciudad Juárez  
en 1999, como parte de la primera generación del naciente programa. Ahí realizó su función de técnico de investigación y su tesis  
de licenciatura en el área de bioquímica, bajo la dirección del Dr. Plenge Tellechea, analizando el efecto de diferentes estructuras  
químicas de diclorobenzenos (precursores de pesticidas) sobre proteínas transportadoras de calcio. Después de obtener su  
licenciatura, ingresó a la Universidad de Texas en El Paso, donde comenzó su tesis doctoral estudiando como un proceso  
postraduccional, la fosforilación del transportador de glicina del cerebro era capaz de regular los flujos de glicina, lo cual en la clínica  
puede ser un prometedor tratamiento a esquizofrenia. Durante sus estudio doctoral fue distinguido dos veces como asistente de  
investigación con fondos del National Institute of Health and National Institute of Mental Health de los Estados Unidos. Finalmente,  
obtuvo el doctorado en el 2010. En el 2011, fue distinguido con el Hispanic Training Fellowship para ocupar la posición de  
Postdoctoral-Research Associate en el Texas Tech Health Science Center en el Paso Texas. Actualmente, el doctor se encuentra  
inmerso en varias investigaciones sobre una de las proteínas (CCR5) responsables de la entrada del virus del SIDA a las células.  
JORGE ANÍBAL SIERRA FONSECA. Se graduó del programa de Licenciatura en Biología de la Universidad Autónoma de Ciudad Juárez  
(UACJ) en el año 2007. Posteriormente inició sus estudios de posgrado en la Universidad de Texas en El Paso (Texas, EUA), donde  
fue admitido en el programa de doctorado en Ciencias Biológicas/Patobiología. Actualmente cursa su tercer año en el programa de  
doctorado, donde además de desarrollar su proyecto de investigación, también funge como instructor asistente en diversos cursos  
de licenciatura. Ha asistido a diversos congresos locales, regionales, nacionales e internacionales, donde ha presentado los  
resultados de diversos proyectos de investigación. Actualmente se encuentra estudiando el papel de las proteínas G heterotrimericas  
en la organización del citoesqueleto durante la diferenciación neuronal y neurodegeneración, utilizando diversos modelos celulares.  
Sus intereses incluyen biología celular, neurociencias, señalización celular y cáncer.  
MANUEL DAVID ARELLANO CARRILLO. En el año 2009 obtuvo el grado de Licenciado en Biología en la Universidad Autónoma de Ciudad  
Juárez con el tema de tesis: Interacción de plaguicidas sobre la actividad enzimática de la ATPasa de Ca2+ de eritrocito humano  
(
PMCA). Además, el biólogo ha participado en diversos congresos nacionales e internacionales entre los que destacan varios  
congresos nacionales de bioquímica y uno organizado por la American Chemical Society. Los trabajos de investigación donde ha  
colaborado se han publicado en diversas revisas tales como en la revista Ciencia en la Frontera. Actualmente, el biólogo realiza sus  
estudios en la Maestría con Orientación Genómica en la UACJ donde evalúa el efecto de deltametrina sobre la expresión de diversos  
genes en Linfocitos T humanos.  
LUIS FERNANDO PLENGE TELLECHEA. Desde 1990 ingresó como becario interno del laboratorio de reproducción en la Facultad de Ciencias  
de la Universidad Autónoma de Baja California. En 1992 culminó sus estudios de Biología en la misma dependencia. Posteriormente  
realizó sus estudios de Doctorado en Ciencias Biológicas por la Universidad de Murcia, culminando en 1998. El Dr. Plenge se ha  
caracterizado por sus estudios bioquímicos en la rama de proteínas asociadas en membranas. Actualmente labora como profesor  
investigador de tiempo completo en la Universidad Autónoma de Ciudad Juárez. Cuenta con múltiples publicaciones y dirección de  
tesis de pregrado y de grado. Es actual director en jefe de la revista de ciencias, Ciencia en la Frontera, e imparte la cátedra de  
Bioquímica en el programa de Biología y de Estructura y función proteínas en la Maestría en Ciencias con orientación en genómica  
(PNP). Actualmente se encuentra de reingreso a la UACJ posterior a una estancia Posdoctoral en el Border Biomedical Research  
Center de la Universidad de Texas at El Paso desde 2010 a Julio del presente, donde estudió los mecanismos bioquímicos de  
neurotransportadores de dopamina y glicina así como escritura de trabajos científicos.  
1
31  
Vol. V, No. 3  Septiembre-Diciembre 2011 •