Salud  
Artículo arbitrado  
Identification of novel point mutations in  
c-kit gene from Leukemia cases: a study  
from Lucknow, Uttar Pradesh, India  
Identificación de nuevas mutaciones puntuales en el gen  
c-kit en casos de Leucemia: un estudio realizado en  
Lucknow, Uttar Pradesh, India  
1
3
2
1
SYED RIZWAN HUSSAIN , AMNA SIDDIQUI , JAVIER VARGAS-MEDRANO , HENA NAQVI ,  
2
1
2,4  
JONATHON MOHL , FARZANA MAHDI AND FAHIM AHMAD  
Recibido: Octubre17, 2011  
Aceptado: Enero 18, 2012  
Abstract  
Resumen  
The c-kit gene is a receptor tyrosine kinase (RTK) class III that  
is expressed in early hematopoietic progenitor cells. Aberrantly  
activated RTK and related downstream signaling partners have  
been reported as key elements in the molecular pathogenesis  
of several malignancies. Within the c-kit gene exon-11 is the  
most frequent site for mutations in different kinds of tumours.  
Mutations in c-kit gene may enhance or interfere with the ability  
of c-kit receptor to initiate the intracellular pathways resulting in  
cell proliferation. Therefore, we aimed to screen the mutations  
in c-kit gene at exon-8 and -11 in malignant Leukemias. Ninety  
Leukemia cases were studied and analyzed by mutation-  
specific PCR-SSCP followed by DNA sequencing. Twenty point  
mutations were detected in eightAML (acute myeloid Leukemia)  
cases within exon-11 which includes Tyr568Ser, Ile571Thr,  
Thr574Pro, Gln575His, Tyr578Pro, Asp579His, His580Gln,  
Arg586Thr, Asn587Asp and Arg588Met. The substitutions  
Lys550Asn, Ile571Leu and Trp582Ser were observed in two  
independent cases and four novel point mutations at codons  
Ile563Lys, Val569Leu, Tyr570Ser, and Pro577Ser. Further, six  
point mutations were detected at exon-8 in six cases (four AML  
and two CML cases), comprising three novel mutations  
Asn423Asp, Gln448Thr, and Gln448His. The point mutations  
Thr417Asp, Tyr418Phe, and Leu421His were observed, but  
were detected only in three cases. These observations suggest  
that mutations in c-kit gene might represent a useful molecular  
genetic marker in Leukemia and incidence of mutation at exon-  
El gen c-kit, que codifica para un receptor tirosina quinasa (RTK)  
de clase III, se expresa en las primeras células progenitoras  
hematopoyéticas. La activación de este RTK y su vía de  
señalización se encuentran involucradas en la patogénesis  
molecular de varias enfermedades. La mutación del gen c-kit en el  
exón 11 es una de las mutaciones más frecuentemente reportadas  
en diferente tipos de tumores. Mutaciones en c-kit podrían  
incrementar o interferir con la habilidad del receptor c-kit para  
iniciar la activación de cascadas de señalización intracelulares  
responsables en la proliferación celular. Por estas razones,  
estudiamos las mutaciones del gen c-kit en el exon 8 y 11 en  
casos con Leucemias. Noventa casos de Leucemia en la India  
fueron estudiados mediante PCR SSCP, seguida por secuenciación  
de DNA. Veinte mutaciones puntuales fueron detectadas en el  
exon 11 en tan solo ocho de los casos conAML (leucemia mieloide  
aguda), entre las que encontraron las mutaciones Tyr568Ser,  
Ile571Thr, Thr574Pro, Gln575His, Tyr578Pro, Asp579His,  
His580Gln, Arg586Thr, Asn587Asp y Arg588Met. Las  
sustituciones Lys550Asn, Ile571Leu y Trp582Ser fueron  
observadas en tan solo dos casos. Además, cuatro nuevas  
mutaciones para los codones Ile563Lys, Val569Leu, Tyr570Ser,  
y Pro577Ser se observaron en este estudio. En el exon 8, seis  
mutaciones puntuales fueron observadas y en seis de los casos  
(
cuatro en AML y dos en CML) encontramos tres nuevas  
mutaciones Asn423Asp, Gln448Thr y Gln448His. Sin embargo,  
las mutaciones puntuales Thr417Asp, Tyr418Phe y Leu421His  
fueron observadas en varias ocasiones, pero en tan solo tres de  
los casos estudiados. Estas observaciones sugieren que las  
mutaciones en c-kit podrían representar un marcador genético  
para Leucemia. La incidencia en la mutación del exon 8 y 11 es  
elevada y podría estar relacionada con la patogénesis de la AML.  
8
and -11 is high and might be involve in pathogenesis of AML.  
Palabras clave: c-kit, exon-8 and -11, Leukemia, mutation,  
SSCP-PAGE.  
Palabras clave: c-kit, exones 8 y 11, Leucemia, mutación, SSCP  
PAGE.  
_
________________________________  
1
Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India.  
Center of Excellence for Infectious Diseases, Biomedical Sciences Department, Texas Tech University Health Science Center and  
Paul L. Foster School of Medicine, El Paso, TX, U.S.A. 79905  
Department of Anestheology, Texas Tech University, El Paso, TX, U.S.A.  
Author for correspondence: fahim.ahmad@ttuhsc.edu.  
2
3
4
2
2
 Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
Introduction  
eukemia is classified based on the presence of specific cytogenetic abnormalities as well  
as the French-American-British (FAB) classification of the leukemic cells (Rowley, 1973). A  
mutation on c-kit gene, a member of the receptor tyrosine kinase (RTK) family type III, is the  
L
most frequently occurring genetic aberration in acute myeloid leukemia (AML). A number of  
observations also suggest a role for c-kit that is important for the development of a range of cells  
including hematopoietic cells in leukaemogenesis (Reilly, 2002).  
High expression of c-kit in AML (60%-80%  
higher than control) has been reported (Reuss-  
Borst et al., 1994; Cole et al., 1996) and point  
mutations in c-kit gene have been identified in  
Harri et al., 2005). Until now, no study has  
reported the frequency and prevalence of  
mutations in exon-8 and -11 of c-kit gene in  
Leukemia patients from northern India. In this  
study we have screened the mutation status of  
exon-8 and -11 of c-kit gene in malignant  
Leukemias (Acute Myeloid Leukemia, Acute  
Lymphoblastic Leukemia, Chronic Myeloid  
Leukemia and Chronic Lymphocytic Leukemia)  
and further explored whether the c-kit gene  
mutations were valuable as malignant markers  
in Leukemia.  
3
3.4-45.0% ofAMLcases (Higuchi et al., 2002).  
However, many of these studies looked for  
mutations in c-kit gen only at coding sequence  
region. It is known that c-kit is a Leukemia proto-  
oncogene and activating c-kit mutations are likely  
to contribute in the development of Leukemia in  
humans (Smith et al., 2004; Piloto et al., 2006;  
Gao et al., 2011; Marcucci et al., 2011). The  
activation sphere of the receptor has resulted in  
the constitutive c-kit kinase activity and c-kit  
receptors harboring such mutations when  
introduced into mammalian cells downstream  
signaling pathways lead to factor-independent  
growth in vitro and leukemogenesis in vivo (Ihle  
et al., 1995; Gao et al., 2011). The c-kit gene is  
a member of the class III tyrosine kinase receptor  
family that includes the platelet-derived growth  
factor receptors (PDGFRs) (Ullrich et al., 1990;  
Matthews et al., 1991; Martín-Broto et al., 2010).  
Class III receptor tyrosine kinases (RTKs) share  
sequence homology and have an overall similar  
structure with five immunoglobulin-like repeats  
in the extracellular domain, a single  
transmembrane domain (TM), a juxtamembrane  
domain (JM), two intracellular tyrosine kinase  
domains (TK1 and TK2) divided by a kinase  
insert domain (KI), and a C-terminal domain  
Material and Methods  
Subjects. The study group included 90  
cases of Leukemia, from the Department of  
Pathology at Era’s Lucknow Medical College and  
Hospital, and from other hospitals and  
pathologies situated in and around the city of  
Lucknow, Uttar Pradesh, in northern India.  
Ethical approval was obtained from the  
Institutional Ethical Committee of Era’s Lucknow  
Medical and Hospital, Lucknow, Uttar Pradesh,  
India. In addition, clinical data was also recorded.  
The blood or bone marrow samples were  
stained by Leishman stain method and the  
cases were classified, according to the FAB  
criteria (Bennett et al., 1976). From the 90  
Leukemia patients, 60 (66.7%) samples were  
withAcute Myeloid Leukemia (AML), 10 (11.1%)  
samples with Acute Lymphoblastic Leukemia  
(ALL), 10 (11.1%) samples with Chronic Myeloid  
Leukemia (CML) and 10 (11.1%) samples with  
Chronic Lymphocytic Leukemia (CLL). The  
demographic profile of patients can be finding  
at supplementary table 1, as well as for controls  
(supplementary table 2).  
(
Yarden and Ullrich, 1988). The genomic locus  
encoding the c-kit gene receptor has 21 exons,  
ranging 100-300 base pairs (bp) (Abu-Duhier et  
al., 2001). The c-kit gene mutations in exon-11  
are reported in gastrointestinal stromal tumors,  
human solid tumors and human germ cell  
tumors (Qingsheng et al., 1999; Hou et al., 2004;  
2
3
Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
Sample collection and DNA extraction.  
Specimen was collected from 90 routinely-  
processed unstained bone marrow slides and  
blood diagnosed as Leukemia. Patients were  
from the Department of Pathology at Era’s  
Lucknow Medical College and Hospital, and  
from other hospitals and pathologies situated  
in and around the city of Lucknow, Uttar  
Pradesh, India. Finally, samples were stored  
Amplifications were done using a MJ Mini  
Thermocycler (Bio-Rad, UK). The cycling  
conditions were adjusted from the procedure  
proposed by Tian et al. (1999). Briefly,  
denaturation was at 94°C for 40 seconds,  
followed by annealing at 56°C for 30 seconds,  
and extension at 72°C for 30 seconds, repeated  
for 30 cycles followed by a final extension step at  
72°C for 8 minutes. Single-strand conformational  
polymorphism (SSCP) analysis was performed  
according to Orita et al. (1989) with few  
o
at -20 C. Genomic DNA was extracted  
according to Moskaluk et al. (1997) with little  
modifications.  
o
modifications. Samples were denatured at 94 C  
for 8 minutes and immediately snap-cooled. Fifty  
Polymerase Chain Reaction and Single-  
Strand Conformational Polymorphism (PCR  
SSCP). Polymerase Chain Reaction (PCR)  
was performed in a 25 l of 1X PCR reaction  
containing 200 ng of template DNA, 10 pmol  
of each primer (forward and reverse  
primers), 10 mmol/L of dNTPs and 0.3 units  
of Taq DNA polymerase (Fermentas,  
Germany). Forward and reverse primers for  
exon-8 were 5’-GGCCATTTCTGTTTTCCTGT-3’  
and 5’-TCTGCTCAGTTCCTGGACAA-3’  
respectively. Both were designed and  
customized by entering the sequence from  
exon-8 into the JustBio.com server.  
Forward and reverse primers for exon-11  
l of amplified PCR product were loaded along  
with 20 l of stop dye in a 10% polyacrylamide  
gel. The gel was run in pre-cooled 2X buffer at  
4°C, for 12 hours at 150 volts. The DNA in the gel  
was stained after separation by electrophoresis  
using a silver stain. Electrophoresis mobility shift  
in single stranded or double stranded DNA from  
patients was detected and compared with DNA  
from wild-type controls (Fig. 1).  
DNA Sequencing. Amplicons were  
sequenced using an automated sequencer, ABI  
3730XL DNA Analyzer (Applied Biosystems,  
Foster city, California, USA) and analyzed using  
FinchTV Software. DNA mutations were  
reconfirmed by sequencing the amplicons in  
both directions and in independent second  
samples. The sequence was analysed using the  
BioEdit software from JustBio.  
5
5
'-ATTATTAAAAGGTGATCTATTTTTC-3' and  
'-ACTGTTATGTGTACCCAAAAAG-3'  
respectively, were proposed by Qingsheng  
Tian et al. (1999).  
Figure 1. SSCP-PAGE analysis showing electrophoresis mobility shift on native page. DNA control  
was loaded in lane 1 and DNA from cases in 2, 3, 4, 5, and 6th lane (no shift in case 29 was observed,  
however, there were shifts in cases: 09, 13, 20, and 27).  
Control  
L1  
Case 09  
L2  
Case 13  
L3  
Case 20  
L4  
Case 27  
L5  
Case 29  
L6  
2
4
 Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
shown in supplementary tables 1 and 2. Out of  
Results  
90 Leukemia cases, 80 samples were found to  
Out of 90 Leukemia cases 51 (56.7%) were  
male and 39 (43.3%) were female with age  
ranging from 2-65 years. The mean age of  
cases is 38.25 years with a SD ± 6.21 (mean  
age of male cases was 38.60 years, SD ± 6.27  
and mean age of female cases was 37.79 years,  
SD ± 6.15). The cases were classified  
according to the FAB criteria (Moskaluk et al.,  
have mutations by a shift in DNA position on  
SSCP-PAGE with respect to DNA from healthy  
donors (Fig. 1). A total of 17 point mutations for  
c-kit gene at exon-11 were found in this  
investigation and only in eight cases with AML  
(Table 1, Fig. 2 and 5). In addition, six point  
mutations for c-kit gene at exon-8 for six AML  
and CML cases were detected by our  
experiments (Table 2, Fig. 3 and 4). After  
comparison to previous reported findings, as is  
shown in tables 3 and 4, c-kit point mutations at  
exon-11 for codons Ile563Lys, Val569Leu,  
Tyr570Ser, and Pro577Ser, and at exon-8 for  
codonsAsn423Asp, Gln448Thr, and Gln448His  
are describe here for the first time.  
1997) as acute myeloid leukemia (AML) (n=60),  
ALL (n=10), CML (n=10), CLL (n=10). The details  
of clinical feature and demographic profile are  
Table 1. c-kit gene point mutations at exon-11 in Leukemia cases.  
Case  
Leukemia Type  
Nucleotide  
Codon  
09  
AML  
TAT  TCT  
TGG TCA  
AGG ATG  
Tyr568Ser  
Trp582Ser  
Arg588Met  
After our findings, where we found point  
mutations around the protein, it was important  
to address where in the protein these mutation  
where located in order to determine the  
possible implication(s) of these mutations in  
protein function. Therefore, we analyzed the  
protein sequence (reference number for c-kit  
protein is P10721) using the UnitPro Knowledge  
Base server. Mutations for exon-11 are located  
between positions 546-976 bp and are in a  
cytoplasmic domain. Mutation Tyr568Ser is  
located in a metal binding site, specifically, a  
magnesium binding site. In addition, the Tyr  
residue at this position is normally  
autophosphorylated by autocatalysis (Price et  
al., 1997; Mol et al., 2003; Sun et al., 2009;  
Zadjali et al., 2011). Moreover, mutations  
Val569Leu and Tyr570Ser are located in a  
domain that interacts with phosphotyrosine-  
binding proteins, and residue Tyr570 is  
1
1
2
3
7
AML  
AML  
AML  
ATA  CTA  
ATA  CTA  
AAA AAC  
AAA AAC  
Ile571Leu  
Ile571Leu  
Lys550Asn  
Lys550Asn  
1
1
1
AML  
AML  
20  
TAC  TCC  
CCT  TCC  
TAT  CCT  
GAT  CAT  
CAC  CAA  
TGG TCA  
AAC GAC  
Tyr570Ser  
Pro577Ser  
Tyr578Pro  
Asp579His  
His580Gln  
Trp582Ser  
Asn587Asp  
2
3
7
AML  
AML  
GTT  CTT  
Val569Leu  
2
ATA  AAA  
ATA  ACA  
ACA  CCA  
CAA  CAC  
AGA  ACA  
Ile563Lys  
Ile571Thr  
Thr574Pro  
Gln575His  
Arg586Thr  
Figure 2. Amino acid sequences of the exon-11 of c-kit gene. The sequence starts at codon 550  
and ends at 591. The wild-type sequence is shown above. Seventeen point mutations in c-kit gene  
at exon-11 are highlighted in grey colour. Case number is indicated at the left column.  
2
5
Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
Table 2. c-kit gene point mutations at exon-8 in Leukemia cases.  
normally autophosphorylated by autocatalysis.  
All point mutations in exon-8 are located in an  
Case  
Leukemia Type  
Nucleotide  
Codon  
Ig-like C2-type 5 domain which is located in  
position 413-507 bp and is part of the  
extracellular portion of the protein (residues 26-  
05  
AML  
AAT  GAT  
Asn423Asp  
33  
AML  
AML  
AML  
CML  
CML  
CAG CAC  
ACT  GAT  
CAG ACA  
TAC TTC  
CTC  CAC  
Gln448His  
Thr417Asp  
Gln448Thr  
Tyr418Phe  
Leu421His  
5
27). According to this information it seems  
most probably, that mutations in exon-11 will  
produce the worse alterations to the normal  
function of c-kit, because these mutations are  
located in places for autophosphorylation and  
magnesium binding sites. However, mutations  
at exon-8 may be affected ligand binding.  
56  
59  
60  
81  
Figure 3. Amino acid sequences of the exon-8 of c-kit gene. The sequence starts at codon  
12 and ends at 448. The wild-type sequence is shown above. Six point mutations in c-kit gene at  
exon-8 are shown in gray colour. Case number is indicated at the left column.  
4
Figure 4. Mutations found during the sequencing  
Discussion  
analysis of c-kit at exon-8. Point mutations AG, CA,  
AC, GA, GC, AT, and TA (resulting in the amino-  
acid substitutions Asn423Asp, Gln448Thr, Gln448His,  
Thr417Asp, Tyr418Phe, and Leu421His).  
To the best of our knowledge, this study is  
the first done from in and around the city of  
Lucknow, Uttar Pradesh, northern India. Here  
we report mutations in exon-8 and exon-11 of c-  
kit gene in Leukemia patients. Previous  
molecular studies inAsian populations (Chinese,  
Korean, and Japanese) have revealed several  
mutations in exon-11 in various types of tumours  
(
Hou et al., 2004; Choe et al., 2006; Taniguchi et  
al., 1999; Kim et al., 2004). Mutations in exons-  
, -13 and -17 of c-kit gene are less frequently  
9
detected than in exon-11. These are considered  
rare in gastrointestinal stromal tumors with a  
reported frequency of less than 10%, but are  
seen more commonly in hematopoietic  
malignancies and germ cell neoplasms (Lux et  
al., 2000; Lasota et al., 2000; Lasota et al.,  
2
9
008). In gastrointestinal stromal tumors, 65–  
2% of tumors are reported to harbor kit-  
activating mutations, the majority of which are  
localized to the juxtamembrane region involving  
exon-11 (Lasota et al., 1999; Rubin et al., 2001).  
2
6
 Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
Figure 5. Mutations found during the sequencing analysis of c-kit gen at exon-11. Point mutations TA, GC, AC,  
CT, TC, CA, GA, AG, and GT (resulting in the amino-acid substitution Ile563Lys, Val569Leu, Tyr570Ser, Pro577Ser,  
Tyr568Ser, Ile571Thr, Thr574Pro, Gln575His, Tyr578Pro, Asp579His, His580Gln, Trp582Ser, Arg586Thr, Asn587Asp, Arg588Met,  
Lys550Asn, and Ile571Leu).  
codons in 576–590 bp have been described by  
Antonescu et al. (2003). These include frame  
deletions of one, to several codons (typically  
involving codons 557–560 bp); point mutations  
and internal tandem duplications (typically  
involving the 30 end). We found heterogeneous  
point mutations, some of which have been  
reported and some are new for AML. In eight  
leukemia cases we found 17 point mutations.  
Lys550Asn and Ile571Leu point mutations have  
already been reported by Yasuoka et al. (2003).  
Mutations in codon 582 reported by Tae et al.  
(2004) (Kim et al., 2004) were for Trp582Tyr and  
Trp582His, whereas Hou et al. (2004) reported  
Trp582Try and Trp582Gln. However, we have  
detected different substitution in the same codon  
where tryptophan is replaced by serine  
(
Trp582Ser) in two independent Leukemia  
cases. Mutations at codons Tyr568Asp,  
Ile571Leu, Thr574Tyr, Gln575Ile, Tyr578Phe,  
Asp579Gln,Asp579Pro, His580Leu, His580Tyr,  
His580Pro, Arg586Trp, Arg586Ile, Arg586Phe,  
Arg586Asp, Asn587Glu,Asn587Pro,Asn587His  
The majority of exon-11 mutations are clustered  
within the classic hotspot region of the codon 5  
end involving codons in 550–560 bp, however,  
a second hot spot at the codon 3 end involving  
2
7
Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
and Arg588Phe, Arg588Tyr, Arg588Lys have  
already been reported (Yasuoka et al., 2003;  
Hou et al., 2004; Kim et al., 2004; Choe et al.,  
the literature before (Table 3). All the mutations  
detected in exon-11, lie between codons 550-  
591. For a comparison purposes, we arrayed  
our findings with the ones found in the literature,  
see Table 3. From this table, it is easy to  
determine which point mutations are novel for  
the field.  
2006).  
As we aimed, we analyzed exon-11 of c-kit  
gene in order to detect point mutations in patients  
with Leukemia. In our analysis, we were able to  
determine new amino acids substitutions  
derived from the point mutations that we  
detected in exon-11 and we found: Tyr568Ser,  
Ile571Thr, Thr574Pro, Gln575His, Tyr578Pro,  
Asp579His, His580Gln,Arg586Thr,Asn587Asp,  
andArg588Met (Table 1). From these mutations,  
we are reporting here, 4 novel mutations:  
Ile563Lys, Val569Leu, Tyr570Ser, and  
Pro577Ser which have never been reported in  
On the other hand, we analyzed exon-8 of  
c-kit gene and we were able to find 6 point  
mutations (Table 2) in Leukemia cases:  
Thr417Val, Tyr418Arg, and Leu421Gly were  
previously reported by Taniguchi et al. (1999),  
and Kohl et al. (2005). In addition, we also  
detected substitutions: Thr417Asp, Tyr418Phe,  
and Leu421His which are novel for the field.  
Moreover, point mutations in codons 423 and  
448 of exon-8 have not been reported for any  
Table 3. Comparison between mutations detected in our study  
or described already for c-kit gene at the exon-11.  
type of Leukemia. However, it was remarkable  
to find out that these point mutations produced  
the following new substitutions: Asn423Asp,  
Gln448Thr, and Gln448His (Table 4).  
Mutation with different  
substitution  
Existing  
Reported  
Mutations  
Novel  
Mutations  
Mutations  
Not reported  
substitution  
Our Result)  
References  
Reported  
Substitution  
Table 4. Novel mutations detected during our study or mutations  
described already for c-kit gene at exon-8.  
(
ATA  AAA Ile563Lys  
GTT  CTT Val569Leu  
TAC  TCC Tyr570Ser  
CCT  TCC Pro577Ser  
Mutation with different  
substitution  
Novel  
mutations  
Mutations  
Not reported  
substitution  
Our result)  
References  
Reported  
substitution  
(
TAT  TCT  
Tyr568Ser  
Tyr568Asp  
Taniguchi et al. (1999)  
AAT  GAT  
CAG ACA  
CAG CAC  
Asn423Asp  
Gln448Thr  
Gln448His  
ATA  ACA  
ACA  CCA  
CAA  CAC  
TAT  CCT  
GAT  CAT  
Ile571Thr  
Ile571Leu  
Thr574Tyr  
Gln575Ile  
Tyr578Phe  
Choe et al. (2006)  
Hou et al. (2004)  
Hou et al. (2004)  
Kim et al. (2004)  
Thr574Pro  
Gln575His  
Tyr578Pro  
Asp579His  
Kohl et al. (2005)  
Gari et al. (1999)  
ACT  GAT  
TAC TTC  
CTC  CAC  
Thr417Asp  
Tyr418Phe  
Leu421His  
Thr417Val  
Tyr418Arg  
Leu421Gly  
Asp579Gln  
Asp579Pro  
Kim et al. (2004)  
Kohl et al. (2005)  
Gari et al. (1999)  
CAC  CAA  
TGG TCA  
AGA  ACA  
His580Gln  
Trp582Ser  
Arg586Thr  
His580Leu  
His580Tyr  
His580Pro  
Hou et al. (2004)  
Kim et al. (2004)  
Kohl et al. (2005)  
Gari et al. (1999)  
Trp582Tyr  
Trp582His  
Trp582Gln  
Hou et al. (2004)  
Kim et al. (2004)  
From all point mutations detected it seems  
that the residue that was more replaced was  
isoleucine following by tyrosine. However,  
because point mutations in the c-kit protein were  
located in extra- and cytoplasmic-domains, we  
thought that maybe these mutations were  
affecting hydrophobicity of these domains.  
Indeed, mutations Arg588Met (exon-11) and  
Tyr418Phe (exon-8) were substitutions where  
a hydrolytic residue was replaced by a  
Arg586Trp  
Arg586Ile  
Arg586Phe  
Arg586Asp  
Hou et al. (2004)  
Kim et al. (2004)  
AAC GAC  
AGG ATG  
Asn587Asp  
Arg588Met  
Asn587Glu  
Asn587Pro  
Asn587His  
Hou et al. (2004)  
Kim et al. (2004)  
Arg588Phe  
Arg588Tyr  
Arg588Lys  
Hou et al. (2004)  
Kim et al. (2004)  
AAA AAC  
ATA  CTA  
Lys550Asn Taniguchi et al. (1999)  
Ile571Leu Choe et al. (2006)  
2
8
 Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
hydrophobic residue. However, most of the  
mutations involved a substitution in a  
hydrophobic residue for a hydrophobic or  
conversely. Physiologically, it seems that  
mutations in exon-11 are possibly more relevant  
regarding c-kit protein function. Interestingly 3  
tyrosines, 1 threonine and 2 lysines residues  
were substituted it, recall that tyrosines and  
threonines are phosphorylation targets and  
lysine is an ubiquitination and sumoylation target.  
in altering the biochemistry of c-kit protein,  
because point mutations at Tyr568Ser,  
Val569Leu, and Tyr570Ser are in places for  
autophosphorylation or magnesium binding  
which are crucial steps in signaling from ligand  
binding. However, this is something that needs  
to be elucidated by additional experiments. On  
the other hand, mutations in exon-8 may also  
be involved in ligand binding. From them,  
mutation Tyr568Ser is located in a magnesium  
binding site. In addition, the Tyr residue at this  
position is normally autophosphorylated by  
autocatalysis (Price et al., 1997; Mol et al., 2003;  
Sun et al., 2009; Zadjali et al., 2011). Moreover,  
mutations Val569Leu and Tyr570Ser are located  
in a domain that interacts with phosphotyrosine-  
binding proteins, and residue Tyr570 is normally  
autophosphorylated by autocatalysis.  
Normally, these types of residues in  
membrane proteins are target for post-  
translational modifications and mutations in  
them may change the way of how proteins  
function (Miranda et al., 2007; Vargas-Medrano  
et al., 2011). In contrast, for exon-11, 4 serines,  
2
threonines and 1 lysine were detected as the  
end residue product from a point mutation.  
Importantly, threonine and serine residues are  
phosphorylation targets and lysine residue is a  
ubiquitination and sumoylation target (Miranda  
et al., 2007; Vargas-Medrano et al., 2011).  
The identification of novel mutations in c-kit  
in patients withAMLnot only provides new insight  
into the pathogenesis of this disease, but also  
may serve to provide a means of confirming a  
diagnosis and assessing prognosis for  
developing new intervention strategies. The  
incidence of mutations at exon-8 and -11 is high  
and might be involved in pathogenesis of AML.  
The mutations described here are  
recommended as prognostic markers in the  
northern Indian population. However, we do not  
discard the idea that these mutations could be  
found in other populations around the world.  
These changes may affect the normal  
phosphorylation and ubiquitination maps for c-  
kit protein which can modify the way of how c-  
kit functions. However, experimental data for  
these hypotheses need to be first generated in  
order to determine if mutations described here  
have a significant effect on the c-kit protein activity.  
Conclusions  
In summary, this study is the first to report  
the presence of c-kit gene mutations in  
Leukemia cases in northern India. Mutations in  
exon-8 and -11 may be involved in c-kit over  
expression in Leukemia. Four novel mutations  
at codons Ile563Lys, Val569Leu, Tyr570Ser, and  
Pro577Ser in exon-11 and three novel mutations  
at codons Asn423Asp, Gln448Thr, and  
Gln448His in exon-8 c-kit gene might be useful  
as molecular genetic markers for Leukemia.  
Future studies in a larger group may be required  
to determine the prognostic implications and  
how these mutations are related with  
progression and pathogenesis of myeloid  
malignancy. Based on our in silico analysis, only  
mutations in exon-11 seem to play a crucial role  
Acknowledgments  
This study was supported by the Intramural  
Grant from the Era’s Lucknow Medical College  
and Hospital, Lucknow, India.  
References  
ABU-DUHIER, F.M.A.C. Goodeve, G.A. Wilson, R.S. Care, I.R. Peake  
and J.T. 2001. Reilly. Identification of novel FLT-3 Asp835  
mutations in adult acute myeloid leukaemia. Br. J. Haematol.  
113(4):983-988.  
ANTONESCU, C.R., G. Sommer, L. Sarran, S.J. Tschernyavsky, E.  
Riedel, J.M. Woodruff, M. Robson, R. Maki, M.F. Brennan, M.  
Ladanyi, R.P. DeMatteo and P. Besmer. 2003. Association of  
KIT exon 9 mutations with nongastric primary siteand  
aggressive behavior: kit mutation analysis and clinical  
correlates of 120 gastrointestinal stromal tumors. Clin. Cancer  
Res. 9(9):3329–3337.  
2
9
Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
BENNETT, J.M., D. Catovsky, M.T. Daniel, G. Flandrin, D.A. Galton,  
H.R. Gralnick and C. Sultan. 1976. Proposal for the  
classification of the acute leukaemias. French American  
British (FAB) cooperative group. Br. J. Haematol. 33:451-  
LUX, M.L., B.P. Rubin, T.L. Biase, C.J. Chen, T. Maclure, G. Demetri,  
S. Xiao, S. Singer, C.D. Fletcher, and J.A. Fletcher. 2000. KIT  
extracellular and kinase domain mutations in gastrointestinal  
stromal tumors. Am. J. Pathol. 156(3):791–795.  
4
58.  
MARCUCCI, G., T. Haferlach, and H. Döhner. 2011. Molecular genetics  
of adult acute myeloid leukemia: prognostic and therapeutic  
implications. J. Clin. Oncol. 29(5):475-86.  
MARTÍN-BROTO, J. L. Rubio, R. Alemany, and J.A. López-Guerrero.  
2010. Clinical implications of KIT and PDGFRA genotyping in  
GIST. Clin. Transl. Oncol. 12(10):670-6.  
CHOE, Y.S., J.G. Kim, S.K. Sohn, D.H. Kim, J.H. Baek, K.B. Lee,  
Y.R. Do, K.Y. Kwon, H.S. Song, M.H. Lee and T.I. Park. 2006.  
Kimc-kit Expression and mutations inperipheral T cell  
lymphomas, except for extra-nodal NK/T cell lymphomas.  
Leuk. Lymphoma. 47(2):267-270.  
COLE, S. R., G.W. Aylett, N.L. Harvey, A.C. Cambareri, and L.K.  
Ashman. 1996. Increased expression of c-Kit or its ligand  
Steel Factor is not a common feature of adult acute myeloid  
leukaemia. Leukemia 10:288-296.  
MATTHEWS, W., C.T. Jordan, G.W. Wiegand, D. Pardoll, and I.R.  
Lemischka. 1991. A receptor tyrosine kinase specific to  
hematopoietic stem and progenitor cell-enriched populations.  
Cell 65(7):1143-1152.  
GAO, X.N. J. Lin, Y.H. Li, L. Gao, X.R. Wang, W. Wang, H.Y.  
Kang, G.T. Yan, L.L. Wang, and L. Yu. 2011. MicroRNA-193a  
represses c-kit expression and functions as a methylation-  
silenced tumor suppressor in acute myeloid leukemia.  
Oncogene. 30(31):3416-28.  
GARI, M., A. Goodeve, G. Wilson, P. Winship, S. Langabeer, D.  
Linch, E. Vandenberghe, I. Peake, and J. Reilly. 1999. C-kit  
proto-oncogene exon 8 in-frame deletion plus insertion  
mutations in acute myeloid leukaemia. Br. J. Haematol.  
MIRANDA, M., K.D. Dionne, T. Sorkina and A. Sorkin. 2007. Three  
ubiquitin conjugation sites in the amino terminus of the dopamine  
transporter mediate protein kinase C-dependent endocytosis  
of the transporter. Mol. Biol. Cell. 18(1):313-23.  
MOL, C.D. K.B. Lim, V. Sridhar, H. Zou, E.Y. Chien, B.C. Sang, J.  
Nowakowski, D.B. Kassel, C.N. Cronin, and D.E. McRee. 2003.  
Structure of a c-kit product complex reveals the basis for kinase  
transactivation. J. Biol. Chem. 278(34):31461-4.  
MOSKALUK, C.A. and S.E. Kern. 1997. Microdissection and  
Polymerase Chain ReactionAmplification of Genomic DNAfrom  
Histological Tissue Sections. Am. J. Pathol. 150(5):1547-52.  
ORITA, M., H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya.  
1
05(4):894–900.  
HIGUCHI, M., D. O’Brien, P. Kumaravelu, N. Lenny,, E.J. Teoh, and  
J.R. Downing. 2002. Expression of a conditional AML1-ETO  
oncogene bypasses embryonic lethality and establishes a  
murine model of human t(8;21) acute myeloid leukemia.  
Cancer Cell 1:63-74.  
HOU, Y.Y., Y.S. Tan, M.H. Sun, Y.K. Wei, J.F. Xu, S.H. Lu, S.J. A-  
Ke-Su, Y.N. Zhou, F. Gao, A.H. Zheng, T.M. Zhang, W.Z.  
Hou, J. Wang, X. Du, and X.Z. Zhu. 2004. C-kit gene mutation  
in human gastrointestinal stromal tumors. World J.  
Gastroenterol. 10(9):1310-1314.  
1
989. Detection of polymorphisms of human DNA by gel  
electrophoresis as single-strand conformation polymorphism.  
Proc. Natl. Acad. Sci. USA. 86(8):2766-70.  
PILOTO, O., M. Wright, P. Brown, K. T. Kim, M. Levis, and D. Small.  
2
007. Prolonged exposure to FLT3 inhibitors leads to resistance  
via activation of parallel signaling pathways. Blood.  
09(4):1643-52.  
PRICE, D.J., B. Rivnay, Y. Fu, S. Jiang, S.Avraham, and H.Avraham.  
997. Direct association of Csk homologous kinase (CHK) with  
1
1
IHLE, J.N., B.A. Witthuhn, F.W. Quelle, K. Yamamoto, and O.  
Silvennoinen. 1995. Signaling through the hematopoietic  
cytokine receptors. Annu. Rev. Immunol. 13:369-398.  
KIM, T.W., H. Lee, Y.K. Kang, M.S. Choe, M.H. Ryu, H.M. Chang,  
J.S. Kim, J.H. Yook, B.S. Kim, and J.S. Lee. 2004. Prognostic  
Significance of c-kit Mutation in Localized Gastrointestinal  
Stromal Tumors. Clinical Cancer Research 10(9):3076–3081.  
KOHL, T.M., S. Schnittger, J.W. Ellwart, W. Hiddemann, and K.  
Spiekermann. 2005. KIT exon 8 mutations associated with  
core-binding factor (CBF)–acute myeloid leukemia (AML)  
cause hyperactivation of the receptor in response to stem  
cell factor. Blood 105(8):3319-3321.  
the diphosphorylated site Tyr568/570 of the activated c-KIT in  
megakaryocytes. J. Biol. Chem. 272(9):5915-20.  
REILLY, J. T. 2002. Class III receptor tyrosine kinases: role in  
leukaemogenesis. Br. J. Haematol. 116:744-757.  
REUSS-BORST, M.A., H.J. Buhring, H. Schmidt, and C.A. Muller. 1994.  
AML: immunophenotypic heterogeneity and prognostic  
significance of c-kit expression. Leukemia 8(2):258-263.  
ROWLEY, J.D. 1973. Identification of a translocation with quinacrine  
fluorescence in a patient with acute leukemia. Ann. Genet.  
16(2):109-112.  
RUBIN, B.P., S. Singer, C. Tsao,A. Duensing, M.L. Lux, R. Ruiz, M.K.  
Hibbard, C.J. Chen, S. Xiao, D.A. Tuveson, G.D. Demetri, C.D.  
Fletcher, and J.A. Fletcher. 2001. KIT activation is a ubiquitous  
feature of gastrointestinal stromal tumors. Cancer Res.  
LASOTA, J., A. Wozniak, M. Sarlomo-Rikala, J. Rys, R. Kordek, A.  
Nassar, L.H. Sobin, and M. Miettinen. 2000. Mutations in  
exons 9 and 13 of KIT gene are rare events in gastrointestinal  
stromal tumors. A study of 200 cases. Am. J. Pathol.  
61(22):8118–8121.  
SIHTO, H., M. Sarlomo-Rikala, O.Tynninen, M.Tanner, L.C.Andersson,  
K. Franssila, N.N. Nupponen, and H. Joensuu. 2005. KIT and  
Platelet-Derived Growth Factor ReceptorAlpha Tyrosine Kinase  
Gene Mutations and KITAmplifications in Human SolidTumors.  
Journal of Clinical Oncology 23(1):49-57.  
SMITH, B.D., M. Levis, M. Beran, F. Giles, H. Kantarjian, K. Berg,  
K.M. Murphy, T. Dauses, J.Allebach, and D. Small. 2004. Single-  
agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical  
activity in patients with relapsed or refractory acute myeloid  
leukemia. Blood 103(10):3669-76.  
1
57(4):1091–1095.  
LASOTA, J., C. L. Corless, M.C. Heinrich, M. Debiec-Rychter, R.  
Sciot, E. Wardelmann, S. Merkelbach-Bruse, H. U. Schildhaus,  
S. E. Steigen, J. Stachura, A. Wozniak, C. Antonescu, O.  
Daum, J. Martin, J.G. Del Muro, and M. Miettinen. 2008.  
Clinicopathologic profile of gastrointestinal stromal tumors  
(
GISTs) with primary KIT exon 13 or exon 17 mutations: a  
multicenter study on 54 cases. Mod. Pathol. 21(4):476–484.  
LASOTA, J., M. Jasinski, M. Sarlomo-Rikala, and M. Miettinen.  
1
999. Mutations in exon 11 of c-Kit occur preferentially in  
SUN, J., M. Pedersen, and L. Rönnstrand. 2009. The D816V  
mutation of c-Kit circumvents a requirement for Src family  
kinases in c-Kit signal transduction. Biol. Chem.  
284(17):11039-47.  
malignant versus benign gastrointestinal stromal tumors and  
do not occur in leiomyomas or leiomyosarcomas. Am. J.  
Pathol. 154(1):53–60.  
3
0
 Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
TANIGUCHI, M., T. Nishida, S. Hirota, K. Isozaki, T. Ito, T. Nomura, H.  
Matsuda, and Y. Kitamura. 1999. Effect of c-kit Mutation on  
Prognosis of Gastrointestinal Stromal Tumors. Cancer  
research 59(17):4297–4300.  
TIAN, Q., H.F. Jr Frierson, G.W. Krystal, and C.A. Moskaluk. 1999.  
Activating c-kit Gene Mutations in Human Germ Cell Tumors.  
Am. J. Pathol. 154(6):1643–1647.  
ULLRICH, A., and J. Schlessinger. 1990. Signal transduction by  
receptors with tyrosine kinase activity. Cell 61(2):203-212.  
VARGAS-MEDRANO, J., V. Castrejon, I. Ramirez, and M. Miranda-  
Arango. (2011). PKC-dependent phosphorylation of the  
glycine transporter 1. Neurochem. Int. 59(8):1123-1132.  
YARDEN, Y., and A. Ullrich. 1988. Growth factor receptor tyrosine  
kinase. Annu. Rev. Biochem. 57:443-478.  
YASUOKA, R., C. Sakakura, K. Shimomura, Y. Fujita, M. Nakanishi,  
H.Aragane,A. Hagiwara, M. Bamba, T.Abe, and H. Yamagishi.  
2003. Mutations in exon-11of the C-KIT gene in a Myogenic  
Tumor and a Neurogenic tumor as well as in gastrointestinal  
stromal tumors. Digestive Surgery 20(3):183-191.  
ZADJALI, F. A.C. Pike, M. Vesterlund, J. Sun, C. Wu, S.S. LiS, L.  
Rönnstrand, S. Knapp, A.N. Bullock, and A. Flores-Morales.  
2011. Structural basis for c-KIT inhibition by the suppressor  
of cytokine signaling 6 (SOCS6) ubiquitin ligase. Biol. Chem.  
286(1):480-90.  
Supplementary table 1. Demographic profile of patients  
Variables  
AML (n = 60)  
4 (56.7%) /  
ALL (n = 10)  
CML (n = 10)  
CLL (n = 10)  
3
06 (60.0%) /  
04 (40.0%)  
05 (50.0%) /  
05 (50.0%)  
06 (60.0%) /  
04 (40.0%)  
M (%)/ F (%)  
26 (43.3%)  
Age range  
2-65  
25-47  
33-56  
30-56  
Mean (±SD)  
Clinical features  
36.43 (± 6.08)  
35.70 (± 6.29)  
43.70 (± 6.96)  
46.30 (± 7.17)  
WBC count cells/  
μl/ cumm  
1
5000 - 60000  
20000 - 40000  
L1/ L2 (n = 10)  
25000 - 450000  
18000 - 35000  
CLL (n = 10)  
FAB  
M (n = 10),  
CML Chronic  
0
M (n = 15),  
phase (n = 10)  
1
M (n = 15),  
2
M (n = 04),  
3
M (n = 08) and  
4
M (n = 08)  
5
Supplementary table 2. Demographic profile of controls  
Variables  
M (%)/ F (%)  
Normal Healthy (n = 100)  
8 (56.7%) /  
5
42 (43.3%)  
Age range  
2-65  
Mean (±SD)  
36.43 (± 6.08)  
All morphological features  
normal and < 5% blast cells  
Clinical features  
WBC count cells/ μl/  
4300- 10800  
cumm  
Cite this article as follows:  
Hussain, S. R., A. Siddiqui, J. Vargas-Medrano, H. Naqvi, J. Mohl, F. Mahdi and F. Ahmad. 2012.  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar  
Pradesh, India. TECNOCIENCIA Chihuahua 6(1): 22-32.  
3
1
Vol. VI, No. 1  Enero-Abril 2012 •  
SYED RIZWAN HUSSAIN, AMNA SIDDIQUI, JAVIER VARGAS-MEDRANO, HENA NAQVI, JONATHON MOHL, FARZANA MAHDI AND FAHIM AHMAD:  
Identification of novel point mutations in c-kit gene from Leukemia cases: a study from Lucknow, Uttar Pradesh, India  
Resumes of the author and co-authors  
th  
SYED RIZWAN HUSSAIN. He was born in Bokaro Steel City India on 11 August 1980. He did his Bachelor’s degree in CBZ (Chemistry,  
Biology and Zoology) and Master’s degree in Biomedical Sciences from India. He is pursuing his Ph.D. in Human Cancer Genetics  
from University of Baba Saheb Bhim Rao Ambedkar University India. He has a diverse area of research, such as Human Cancer  
Genetics, Molecular Diagnosis, Medical Clinical Biochemistry and Male Infertility. Currently, Syed Rizwan is a Research Assistant at  
Department of Biotechnology, Era’s Lucknow Medical College and Hospital, India.  
th  
AMNA SIDDIQUI. She was born in Jhansi India in October 9 1979. She did Bachelor’s degree in CBZ (Chemistry, Biology and Zoology)  
and Master’s degree in Biotechnology from India. She completed her Ph.D. in Biotechnology from University of Bundelkhand India in  
2010. She joined as a Sr. Manager in 2009 at Hindustan Bioenergy Ltd Lucknow India. She has diverse area of research such as  
Molecular biology, Microbiology, Plant biology and Human genetics. Currently, Dr. Amna is a Postdoctoral-Research Associate at  
Texas Tech University Health Science Center and Paul L. Foster School of Medicine. She got many scientific awards and fellowships  
in India.  
JAVIER VARGAS MEDRANO. He was born in Juarez City, Chih., México. From 1999-2005, Dr. Vargas attended college at the Autonomous  
University of Juarez City. During his Bachelor's degree, Dr. Vargas was involved in the field of Toxicology, studying the effect of  
2+  
pesticides on Ca -ATPases, and he became author of many publications and conferences. Later, he attended graduate school at  
the University of Texas at El Paso, where he was involved in a research project studying the glycine transporter and its regulation,  
and its possible role as a pharmacological target in the treatment of schizophrenia. During his doctoral studies, he was awarded  
with two research assistantships funded by the National Institute of Health and Mental Health. Currently, Dr. Vargas is member of the  
American Chemical Society and he is a Postdoctoral-Research Associate at Texas Tech University Health Science Center and Paul  
L. Foster School of Medicine.  
th  
HENA NAQVI. She was born on 8 December 1982 at Gorakhpur India. She did her Bachelor’s degree in CBZ (Chemistry, Biology and  
Zoology) and Master’s degree in Biotechnology from India. She is pursuing her Ph.D. in Molecular Medical Genetics from C.S.M.  
Medical University, (Formerly-K.G. Medical University), Lucknow, India. She has worked as a junior lecturer in 2006-07 at Capital  
College, Bangalore, India. She joined as a Research Assistant in 2008 at Era’s Lucknow Medical College and Hospital, Lucknow,  
India. Her area of research is Molecular biology, Human genetics and Male infertility. Currently, Ms. Hena Naqvi is working as Women  
Scientist A approved by Department of Science and Technology, Govt. of India at Era’s Lucknow Medical College and Hospital,  
Lucknow, India.  
JONATHON MOHL. He was born in St Louis, Missouri, United States (USA). He received a Bachelors of Science in Microbiology and  
Biochemistry at Colorado State University in Fort Collins, Colorado in 2002. While attaining this degree, he worked in a Mycrobacterial  
laboratory working on M. avium and M. avium ssp. paratuberculosis. He also worked as a teaching assistant in a molecular biology  
laboratory. After moving to El Paso, Texas, USA, he received a Professional Master of Science degree in Bioinformatics in 2009 at  
the University of Texas at El Paso. In the process of attaining his Master’s degree, he worked at a bioinformatics programmer on the  
RNAVLab project and as a teaching assistant in the introductory bioinformatics courses. Currently, he is working in HIV research  
lab at the Texas Tech University Health Sciences Center in El Paso as a research aid.  
th  
FARZANA MAHDI. He was born on 28 June 1966 at Lucknow, India. She did her Bachelor’s degree in CBZ (Chemistry, Biology and  
Zoology) and a Master’s degree in Organic Chemistry from India. She completed her Ph.D. in Life Sciences from Kanpur University  
1992. She joined as an Assistant Professor in 2000 at Era’s Lucknow Medical College and Hospital, Lucknow, India. She has diverse  
area of research such as Free Radical Biology, Toxicology, Clinical Biochemistry, Molecular aspects of metal toxicity, Male infertility,  
Human Cancer Genetics. Currently, Dr. Farzana is Life Member of Indian Society for Reproductive Biology and Comparative  
Endocrinology and Association of Clinical Biochemists of India. She is also a Founder Member of Society for Free Radical Research  
India. Currently, she is working as a Professor in Department of Biochemistry, Era’s Lucknow Medical College and Hospital,  
Lucknow, India.  
th  
FAHIM AHMAD. He was born in Daltonganj India in 12 October 1976. He did a Bachelor’s and Master’s degrees in Biotechnology from  
India. He completed his Ph.D. in Human Genetics from the University of Bundelkhand India in 2007. He joined as an Assistant  
Professor in 2009 at Isabella Thoburn College Lucknow, India. Dr. Ahmad has diverse area of research such as Human genetics,  
Molecular Virology and Cancer Genetics. Currently, Dr. Ahmad is member of Biotechnological Board in Jharkhand State and is a  
Postdoctoral-Research Associate at Texas Tech University Health Science Center and Paul L. Foster School of Medicine. He got  
many scientific awards and fellowships in India. His current project at Texas Tech University Health Sciences Center focuses on the  
mechanisms of genetic resistance to HIV-1 infection funded by the National Institute of Health.  
3
2
 Vol. VI, No. 1  Enero-Abril 2012 •