fattening lambs during aerobic display. Meat Science, 98(4): 646-651.
https://doi.org/10.1016/j.meatsci.2014.06.036
Cirkovic Velickovic, T. D., & Stanic-Vucinic, D. J. (2018). The Role of Dietary Phenolic Compounds in
Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties.
Comprehensive Reviews in Food Science and Food Safety, 17(1): 82-103. https://doi.org/10.1111/1541-
4337.12320
Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews
in Food Science and Food Safety, 5(4): 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x
Choi, I. S., Cha, H. S., & Lee, Y. S. (2014). Physicochemical and Antioxidant Properties of Black Garlic.
Molecules, 19(10): 16811-16823. https://doi.org/10.3390/molecules191016811
Dai, F., Chen, W. F., & Zhou, B. (2008). Antioxidant synergism of green tea polyphenols with α-
tocopherol and l-ascorbic acid in SDS micelles. Biochimie, 90(10): 1499-1505.
https://doi.org/10.1016/j.biochi.2008.05.007
Dewi, N. N. A., & Mustika, I. W. (2018). Nutrition content and antioxidant activity of black garlic.
International Journal of Health Sciences, 2(1): 11-20. http://dx.doi.org/10.29332/ijhs.v2n1.86
Domínguez, R., Pateiro, M., Agregán, R., & Lorenzo, J. M. (2017). Effect of the partial replacement of
pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter
type sausage. Journal of Food Science and Technology, 54: 26-37. https://doi.org/10.1007/s13197-016-
2405-7
Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein
oxidative deterioration in meat and meat products: A review. Food Research International, 64: 171-
181. https://doi.org/10.1016/j.foodres.2014.06.022
Habinshuti, I., Chen, X., Yu, J., Mukeshimana, O. Duhoranimana, E., Karangwa, E., Muhoza, B.,
Zhang, M., Xia, S., & Zhang, X. (2019). Antimicrobial, antioxidant and sensory properties of
Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates.
LWT, 101: 694-702. https://doi.org/10.1016/j.lwt.2018.11.083
Hygreeva, D., Pandey, M. C., & Radhakrishna, K. (2014). Potential applications of plant-based
derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.
Meat Science, 98(1): 47-57. https://doi.org/10.1016/j.meatsci.2014.04.006
Karre, L., Lopez, K., & Getty, K. J. (2013). Natural antioxidants in meat and poultry products. Meat
Science, 94(2) : 220-227. https://doi.org/10.1016/j.meatsci.2013.01.007
Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical
review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1): 62-
70. https://doi.org/10.1016/j.jfda.2016.11.003
Khlebnikov, A. I., Schepetkin, I. A., Domina, N. G., Kirpotina, L. N., & Quinn, M. T. (2007). Improved
quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in
chemical, enzymatic, and cellular systems. Bioorganic & Medicinal Chemistry, 15(4): 1749-1770.
https://doi.org/10.1016/j.bmc.2006.11.037
Lee, H. J., Yoon, D. K., Lee, N. Y., & Lee, C. H. (2019). Effect of aged and fermented garlic extracts as
natural antioxidants on lipid oxidation in pork patties. Food Science of Animal Resources, 39(4): 610-
622. https://pmc.ncbi.nlm.nih.gov/articles/PMC6728816/
Min, B. R., Nam, K. C., Cordray, J. C., & Anh, D. U. (2008). Factors affecting oxidative stability of
pork, beef, and chicken meat. Iowa State University Animal Industry Report, 5(1).
https://doi.org/10.31274/ans_air-180814-1046
Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in
meat and meat products. Meat Science, 49(1): S73-S86. https://doi.org/10.1016/S0309-1740(98)90039-
0