Hinderer, K. A., VonRueden, K. T., Friedmann, E., McQuillan, K. A., Gilmore, R., Kramer, B., &
Murray, M. (2014). Burnout, compassion fatigue, compassion satisfaction, and secondary
traumatic stress in trauma nurses. Journal of Trauma Nursing, 21(4): 160–169.
https://doi.org/10.1097/JTN.0000000000000055
Kumari, K., & Das, S. (2023). Stress Detection System using Natural Language Processing and
Machine Learning Techniques. CEUR Workshop Proceedings, 3416, 45–55. https://ceur-
ws.org/Vol-3416/paper_6.pdf
Li, R., & Liu, Z. (2020). Stress detection using deep neural networks. BMC Medical Informatics and
Decision Making, 20(11): 285. https://doi.org/10.1186/s12911-020-01299-4
Magaña-Salazar, M. Y., Méndez de Robles, S. J., & Martínez-Díaz, S. (2023). Estrés laboral y salud
mental del personal de primera línea en la atención de la COVID-19. Alerta, Revista Científica Del
Instituto Nacional de Salud. https://api.semanticscholar.org/CorpusID:256490428
Meadors, P., Lamson, A., Swanson, M., White, M., & Sira, N. (2010). Secondary traumatization in
pediatric healthcare providers: compassion fatigue, burnout, and secondary traumatic stress.
OMEGA - Journal of Death and Dying, 60(2): 103–128. https://doi.org/10.2190/om.60.2.a
Nath Mohalder, R., Alam Hossain, M., & Hossain, N. (2024). Classifying the Supervised Machine
Learning and Comparing the Performances of the Algorithms. International Journal of Advanced
Research, 12(01), 422–438. https://doi.org/10.21474/ijar01/18138
Navarro Cantos, C. (2018). Detección de los niveles de estrés yansiedad en pilotos aplicando técnicas
de Machine Learning. (Trabajo Fin de Grado Inédito). Universidad de Sevilla, Sevilla.
https://idus.us.es/handle/11441/84880
Nijhawan, T., Attigeri, G., & Ananthakrishna, T. (2022). Stress detection using natural language
processing and machine learning over social interactions. Journal of Big Data, 9: 33.
https://doi.org/10.1186/s40537-022-00575-6
Sandoval Rodríguez-Bermejo, D. (2019). Diseño E Implementación De Un Sistema Para La Detección
Del Estrés Mediante Redes Neuronales Convolucionales a Partir De Imágenes Térmicas. Tesis de
maestría Ingeniería de Telecomunicación. UPM. https://oa.upm.es/57804/
Sarwar, M. A., & Saadeh, W. (2023). Monitoring Blood Volume Decomposition State for Traumatic
Stress-Induced Hemorrhage via Wearable Sensing and Ensemble Learning. 2023 IEEE
International Symposium on Circuits and Systems (ISCAS), 1–5.
https://doi.org/10.1109/ISCAS46773.2023.10181387
Siam, A. I., Gamel, S. A., & Talaat, F. M. (2023). Automatic stress detection in car drivers based on
non-invasive physiological signals using machine learning techniques. Neural Computing and
Applications, 35(17): 12891–12904. https://doi.org/10.1007/s00521-023-08428-w
Stamm, B. H. (2010). The concise ProQOL manual. Pocatello, ID: ProQOL. Org, 78.
https://www.illinoisworknet.com/WIOA/Resources/Documents/The-Concise-ProQOL-
Manual.pdf
Suárez-Carreño, F. M., & Dionisio-Rosales, L. (2019). Algoritmo para la evaluación del modelo
dinámico del estrés. Espirales Revista Multidisciplinaria De investigación, 3(31), 37–49.
https://doi.org/10.31876/er.v3i31.691