McFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. (2020). Metal-based photosensitizers
for photodynamic therapy: the future of multimodal oncology? Curr. Opin. Chem. Biol. 56: 23-27.
https://doi.org/10.1016/j.cbpa.2019.10.004
Monro, S., Colón, K. L., Yin, H., Roque III, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron,
C. G. & McFarland, S. A. (2019). Transition metal complexes and photodynamic therapy from a
tumor-centered approach: challenges, opportunities, and highlights from the development of
tld1433. Chem. Rev. 119(2): 797–828. https://doi.org/10.1021/acs.chemrev.8b00211
O’Connor, A., Gallagher, W. M. & Byrne, A. T. (2009). Porphyrin and nonporphyrin photosensitizers
in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol.
85(5): 1053-1074. https://doi.org/10.1111/j.1751-1097.2009.00585.x
Parab, S., Achalla, P. K., Yanamandala, N., Singhvi, G., Kesharwani, P. & Dubey, S. K. (2023).
Nanomaterials for photodynamic therapy. In Sensitizers in photodynamic therapy (pp. 81-103).
Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85595-2.00002-5
Savjani, K, T., Gajjar, A. K. & Savjani J. S. (2012). Drug solubility: importance and enhancement
techniques. Inter. Sch. Res. Notices 2012: 195727. https://doi.org/10.5402/2012/195727
Shafirstein, G., Bellnier, D., Oakley, E., Hamilton, S., Potasek, M., Beeson, K. & Parilov, E. (2017).
Interstitial photodynamic therapy—A focused review. Cancers 9(2):12.
https://doi.org/10.3390/cancers9020012
Sivasubramanian, M., Chuang, Y. C. & Lo, L. W. (2019) Evolution of nanoparticle-mediated
photodynamic therapy: from superficial to deep-seated cancers. Molecules, 24(3): 520.
https://doi.org/10.3390/molecules24030520
Smith, C. B., Days L. C., Alajroush, D. R., Faye, K., Khodour, Y., Beebe S. J. & Holder, A. A. (2021).
Photodynamic therapy of inorganic complexes for the treatment of cancer. Photochem. Photobiol.,
98(1): 17-41. https://doi.org/10.1111/php.13467
Therrien, B. (2013). Transporting and shielding photosensitisers by using water-soluble
organometallic cages: A new strategy in drug delivery and photodynamic therapy. Chem. Eur. J.
19(26): 8378-8386. https://doi.org/10.1002/chem.201301348
Usuda, J., Kato, H., Okunaka, T., Furukawa K., Tsutsui, H., Yamada, K., Suga, Y., Honda, H.,
Nagatsuka, Y., Ohira, T., Tsuboi, M. & Hirano, T. (2006). Photodynamic therapy (PDT) for lung
cancers. J. Thorac. Oncol. 1(5): 489–493. https://doi.org/10.1016/S1556-0864(15)31616-6
Veld Huis In 't, R. V., Heuts, J., Ma, S., Cruz, L. J., Ossendorp, F. A. & Jager, M. J. (2023). Current
challenges and opportunities of photodynamic therapy against cancer. Pharmaceutics 15(2): 330.
https://doi.org/10.3390/pharmaceutics15020330
Wang, K. K., Song, S., Jung, S. J., Hwang, J. W., Kim, M. G., Kim, J. H., Sung, J., Lee, J. K. & Kim, Y.
R. (2020). Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric
conditions. Phys. Chem. Chem. Phys. 22(38): 21664-21671. https://doi.org/10.1039/D0CP00739K
Zhang, J., Jiang, C., Figueiró Longo, J. P., Azevedo, R. B., Zhang, H. & Muehlmann, L. A. (2018). An
updated overview on the development of new photosensitizers for anticancer photodynamic
therapy. Acta Pharm Sin B 8(2): 137-146. https://doi.org/10.1016/j.apsb.2017.09.003