Eggersdorfer, M. (2000). Terpenes. ULLMANN’s Encyclopedia of Industrial Chemistry 36:29–45.
https://doi.org/10.1002/14356007.a26_205
Espinosa Andrews, H., Garcia Marquez, E. & Gastélum Martínez, E. (2016). Los compuestos
Bioactivos y Tecnologías de Extracción. NanoBio, CIATEJ. ISBN 978-607-97421-5-7
https://ciatej.mx/files/divulgacion/divulgacion_5a43b85320f15.pdf
Fortman, D. J., J. P. Brutman, G. X. De Hoe, R. L. Snyder, W. R. Dichtel & M. A. Hillmyer. (2018).
Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustainable
Chemistry & Engineering 6(9):11145-11159. https://doi.org/10.1021/acssuschemeng.8b02355
Friebe, L., H. Windisch, O. Nuyken & W. Obrecht. (2004). Polymerization of 1,3-butadiene initiated
by neodymium versatate/triisobutylaluminum/ethylaluminum sesquichloride: impact of the
alkylaluminum cocatalyst component. Journal of Macromolecular Science, Part A. Pure and Applied
Chemistry 41(3):245-256. https://doi.org/10.1081/MA-120028204
Hilschmann, J. & G. Kali. (2015). Bio-based polymyrcene with highly ordered structure via solvent
free controlled radical polymerization. European Polymer Journal 73:363-373.
https://doi.org/10.1016/j.eurpolymj.2015.10.021
Imhof, P. & van der Waal, J. C. (Eds.). (2013). Catalytic process development for renewable materials.
WILEY-VCH. https://doi.org/10.1002/9783527656639
Loughmari, S., A. Hafid, A. Bouazza, A. E. Bouadili, P. Zinck & M. Visseaux. (2012). Highly
stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst:
access to bio-sourced elastomers. Journal of Polymer Science Part A: Polymer Chemistry 50(14):2898-
2905. https://doi.org/10.1002/pola.26069
Manuiko, G. V., I. I. Salakhov, G. A. Aminova, I. G. Akhmetov, G. S. Dyakonov, V. V. Bronskaya &
E. V. Demidova. (2010). Mathematical modeling of 1,3-butadiene polymerization over a
neodymium-based catalyst in a batch reactor with account taken of the multisite nature of the
catalyst and chain transfer to the polymer. Theoretical Foundations of Chemical Engineering 44:139-
149. https://doi.org/10.1134/S0040579510020041
Nagarajan, K. J., A. N. Balaji & N. R. Ramanujam. (2018). Isolation and characterization of cellulose
nanocrystals from Saharan aloe vera cactus fibers. International Journal of Polymer Analysis and
Characterization 25(2):51-64. https://doi.org/10.1080/1023666X.2018.1478366
Nam, S., A. D. French, B. D. Condon & M. Concha. (2016). Segal crystallinity index revisited by the
simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate
Polymers 135:1-9. https://doi.org/10.1016/j.carbpol.2015.08.035
Neira-Velázquez, M. G., L. F. Ramos de Valle, E. Hernández-Hernández & I. Zapata-González. (2008).
Surface modification of carbon nanofibers (CNFs) by plasma polymerization of
methylmethacrylate and its effect on the properties of PMMA/CNF nanocomposites. e-Polymers
8:162, 1-11. https://doi.org/10.1515/epoly.2008.8.1.1855
Norliyana Idris, S., May Amelia, T. S., Bhubalan, K., Mohd Lazim, A. M., Mohd Ahmad Zakwan, N.
A., Imran Jamaluddin, M., Santhanam, R., Abdullah Amirul, A., Vigneswari S & Ramakrishna, S.
(2023). The degradation of single-use plastics and commercially viable bioplastics in the
environment: A review. Environmental Research 231(Part 1), 115988:1-15.
https://doi.org/10.1016/j.envres.2023.115988
Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla & D. K. Johnson. (2010). Cellulose crystallinity index:
measurement techniques and their impact on interpreting cellulase performance. Biotechnology for
Biofuels 3(10):1-10. https://doi.org/10.1186/1754-6834-3-10
Peng, Y., D. J. Gardner, Y. Han, A. Kiziltas, Z. Cai & M. A. Tshabalala. (2013). Influence of drying
method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose
20:2379-2392. https://doi.org/10.1007/s10570-013-0019-z