Lin, Y., Su, Y., Li, Z. & Chen, Y. (2022) Supramolecular combination cancer therapy based on
macrocyclic supramolecular materials. Polymers 14(22): 4855.
https://doi.org/10.3390/polym14224855
Menon, S., Mathew, M. R., Sam, S., Keerthi, K. & Kumar, K. G. (2020) Recent advances and challenges
in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of
Electroanalyical Chemistry 878: 114596. https://doi.org/10.1016/J.JELECHEM.2020.114596
Mizukami, S., Tagano, T., Urano, Y., Odani, A. & Kikuchi, K. (2002) A fluorescent anion sensor that
works in neutral aqueous solution for bioanalytical application. J. Am. Chem. Soc. 124(15): 3920-
3925. https://doi.org/10.1021/ja0175643
Mock, W. L., Irra, T. A., Wepsiec, J. P. & Manimaran, T. (1983). Cycloaddition induced by cucurbituril.
A case of Pauling principle catalysis. Journal of Organic Chemistry 48(20): 3619–3620.
https://doi.org/10.1021/jo00168a070
Mutihac, R. C., Bunaciu, A. A., Buschmann, H. J. & Mutihac, L. (2020) A brief overview on
supramolecular analytical chemistry of cucurbit(n)urils and hemicucurbit(n)urils. J. Incl. Phenom.
Chem. 98(3-4): 137–148. https://doi.org/10.1007/s10847-020-01019-5
Nilan, M. & Hennig, A. (2022) Enzyme assays with supramolecular sensors-the label-free approach.
RSC Adv. (12): 10725-10748. https://doi.org/10.1039/D1RA08617K
Norato, M. A., Beasley, M. H., Campbell, S. G., Coleman, A. D., Geeting, M. W., Guthrie, J. W. Kennell,
C. W., Pierce, R. A., Ryberg, R. C., Walker, D. D., Law, J. D. & Todd, T. A. (2007) Demonstration
of the caustic-side solvent extraction process for the removal of 137Cs from Savannah River site
high level waste. Separation Science & Technology 38(12-13): 2647-2666. https://doi.org/10.1081/SS-
120022565
Oberacher, H., Pitterl, F., Erb, R. & Plattner, S. (2015) Mass spectrometric methods for monitoring
redox processes in electrochemical cells. Mass. Spectrom. Rev. 34(1): 64 - 92.
https://doi.org/10.1002/MAS.21409
Oshikawa, Y., Furuta, K., Tanaka, S. & Ojida, A. (2016) Cell surface anchored fluorescent probe
capable of real-time imaging of single mast cell degranulation based on histamine-induced
coordination displacement. Anal. Chem. 88(3): 1526–1529.
https://doi.org/10.1021/acs.analchem.5b04758
Ozkantar, N., Soylak, M. & Tuzen, M. (2019) Determination of copper using supramolecular solvent-
based microextraction for food, spices and water samples prior to analysis by flame atomic
absorption spectrometry. Atomic Spectroscopy. 40(1): 17-23.
http://dx.doi.org/10.46770/AS.2019.01.003
Panhwar, A. H., Kazi, T., Afridi, H. I., Shah, F., Arain, S. A., Ullah, N., Shahzadi, M., Brahman, K. D.
& Khan, A. R. (2016) Preconcentration of cadmium in water and hair by supramolecular solvent-
based dispersive liquid-liquid microextraction. Analytical Letters 49(15): 2436-2445.
https://doi.org/10.1080/00032719.2016.1149189
Patel, H. H., Trivedi, M., Maniar, M., Ren, C. & Dave, R.H. (2018) Effect of β-cyclodextrin and
hydroxypropyl β-cyclodextrin on aqueous stability, solubility, and dissolution of novel anti-
cancer drug rigosertib. Journal of Pharmaceutical Research International 21(3): 1-20.
http://dx.doi.org/10.9734/JPRI/2018/39890