control limits for antifungal disk susceptibility testing of yeasts; Informational supplement. CLSI
document M44-S2
Das, A. K. & Singh, V. (2016). Antioxidative free and bound phenolic constituents in botanical
fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chemistry 201: 298-306.
https://doi.org/10.1016/j.foodchem.2016.01.099
Ferruz, E., Loran, S., Herrera, M., Gimenez, I., Bervis, N., Barcena, C., Carramiñana, J. J., Juan, T.,
Herrera, A. & Ariño, A. (2016). Inhibition of Fusarium growth and mycotoxin production in
culture medium and in maize kernels by natural phenolic acids. Journal of food protection 79(10):
1753-1758. https://doi.org/10.4315/0362-028X.JFP-15-563
Gromadzka, K., Błaszczyk, L., Chełkowski, J. & Waśkiewicz, A. (2019). Occurrence of mycotoxigenic
Fusarium species and competitive fungi on preharvest maize ear rot in Poland. Toxins 11(4):
224. https://doi.org/10.3390/toxins11040224
Han, Y., Vimolmangkang, S., Soria-Guerra, R. E. & Korban, S. S. (2012). Introduction of apple ANR
genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss
of anthocyanin. Journal of Experimental Botany 63(7): 2437-2447.
https://doi.org/10.1093/jxb/err415
Hümmer, W. & Schreier, P. (2008). Analysis of proanthocyanidins. Molecular Nutrition & Food
Research 52(12): 1381-1398. https://doi.org/10.1002/mnfr.200700463
Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J. & Shi, J. (2019). Occurrence, toxicity, production
and detection of Fusarium mycotoxin: A review. Food Production, Processing and Nutrition 1(6):
1-14. https://doi.org/10.1186/s43014-019-0007-2
Kato, T. A., Mapes, C., Mera, L. M., Serratos, J. A. & Bye, R. A. (2009). Origen y diversificación del
maíz: una revisión analítica. Universidad Nacional Autónoma de México, Comisión Nacional para el
Conocimiento y Uso de la Biodiversidad. México, DF, 116.
https://www.biodiversidad.gob.mx/publicaciones/versiones_digitales/Origen_deMaiz.pdf
Kumar, S., Abedin, M., Singh, A. K. & Das, S. (2020). Role of phenolic compounds in plant-defensive
mechanisms. In: Lone, R., Shuab, R., Kamili, A. (Eds). Plant phenolics in sustainable agriculture pp.
517-532. Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_22
Li, J., Luan, Q., Han, J., Chen, C. & Ren, Z. (2022). CsMYB60 Confers Enhanced Resistance to Fusarium
solani by Increasing Proanthocyanidin Biosynthesis in Cucumber. Phytopathology® 112(3): 588-
594. https://doi.org/10.1094/PHYTO-05-21-0223-R
Libron, J. A. M. A., Cardona, D. E. M., Mateo, J. M. C., Beltran, A. K. M., Tuaño, A. P. P. & Laude, T.
P. (2021). Nutritional properties and phenolic acid profile of selected Philippine pigmented
maize with high antioxidant activity. Journal of Food Composition and Analysis 101: 103954.
https://doi.org/10.1016/j.jfca.2021.103954
Magaña, J. M., Peniche, H. A., Tiessen, A. & Gurrola, C. M. (2020). Pigmented maize (Zea mays L.)
contains anthocyanins with potential therapeutic action against oxidative stress-A
review. Polish Journal of Food and Nutrition Sciences 70(2): 85-99.
https://doi.org/10.31883/pjfns/113272
National Committee for Clinical Laboratory Standards. (2002). Reference method for broth dilution
antifungal susceptibility testing of conidium-forming filamentous fungi. Proposed standard
document M38-A. Clinical and Laboratory Standards Institute. Wayne, Pa
Ochoa, Y. M., Cerna, E., Landeros, J., Hernández, S. & Delgado, J. C. (2012). Evaluación in vitro de la
actividad antifúngica de cuatro extractos vegetales metanólicos para el control de tres especies
de Fusarium spp. Phyton (Buenos Aires) 81(1): 69–73. https://bit.ly/3WI2cOB