Ampatzidis, Y., Partel, V. 2019. UAV-Based High Throughput Phenotyping in Citrus Utilizing
Multispectral Imaging and Artificial Intelligence. Remote Sensing, 11 (410): 2-19.
https://doi.org/10.3390/rs11040410
Ampatzidis, Y., Partel, V., Costa, L. 2020. Agroview: Cloud-based application to process, analyze and
visualize UAVcollected data for precision agriculture applications utilizing artificial intelligence.
Computers and Electronics in Agriculture, 174 105457: 1-12.
https://doi.org/10.1016/j.compag.2020.105457
Costa, L., Nunes, L., Ampatzidis, Y. 2020. A new visible band index (vNDVI) for estimating NDVI
values on RGB images utilizing genetic algorithms. Computers and Electronics in Agriculture,
172: 1-13. https://doi.org/10.1016/j.compag.2020.105334
Csillik, O., Cherbini, J., Johnson, R., Lyons, A., Kelly, M. 2018. Identification of Citrus Trees from
Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones, 2 (4): 1-16.
https://doi:10.3390/drones2040039
Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., Sun, X. 2021. A Technical Study on UAV
Characteristics for Precision Agriculture Applications and Associated Practical Challenges.
Remote Sensing, 13: 1-25. https://doi.org/10.3390/rs13061204
Delgado, G., Estrada, J., Rivera, M., Catalán, E., Esquivel, G. 2014. Evaluación y diseño del riego por
melgas mediante un modelo de simulasión. AGROFAZ, 14(2): 45-51.
https://dialnet.unirioja.es/servlet/articulo?codigo=5733354
Demin, P.E. 2014. Aportes para el mejoramiento del manejo de los sistemas de riego. Instituto
Nacional de Tecnología Agropecuaria. San Fernando del Valle de Catamarca, Catamarca. pp 28.
https://bit.ly/3SkIkO9
González, A., Amarillo, G., Amarillo, M., Sarmiento, F. 2016. Drones aplicados a la agricultura de
precisión. Revista Especializada en Ingeniería, 10: 23-37. https://doi.org/10.22490/25394088.1585
Ha, T., Duddu, H., Vandenberg, A., Shirtliffe, S. 2022. A semi-automatic workflow for plot boundary
extraction of irregularly sized and spaced field plots from UAV imagery. The Plant Phenome 2022;
5:e20039: 1-8. https://doi.org/10.1002/ppj2.20039
Hashimoto, N., Saito, Y., Maki, M., Homma, K. 2019. Simulation of Reflectance and Vegetation
Indices for Unmanned Aerial Vehicle (UAV) Monitoring of Paddy Fields. remote sensing, 11
(2119): 2-13. https://doi.org/10.3390/rs11182119
Houborg, R., y Boegh, E. 2008. Mapping leaf chlorophyll and leaf area index using inverse and
forward canopy reflectance modeling and SPOT reflectance data. Remote Sensing of
Environment, 112: 186–202. https://doi:10.1016/j.rse.2007.04.012
Huete, A., Didan, K., Miura, T., Rodríguez, E.P., Gao, X., Ferreira, L.G. 2002. Overview of the
radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of
Environment, 83 (1): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Kameyama, S., Sugiura, K. 2020. Estimating Tree Height and Volume Using Unmanned Aerial
Vehicle Photography and SfM Technology, with Verification of Result Accuracy. 4 (19): 1-21.
https://doi.org/10.3390/drones4020019